COSMOLOGICAL SOLUTION OF THE EINSTEIN–WEYL EQUATION

A. N. Makarenko and V. V. Obukhov

The accurate integration of the Einstein–Weyl field equations is considered for the case when the spinor field depends only on the time, while the metric specifies a uniform space–time of type I in the Bianci classification, i.e., a particular case of a Steckel space of type (3.0).

INTRODUCTION

The accurate integration of a system of self-consistent Einstein–Weyl equations is one of the more complex problems in modern mathematical physics. Only a few solutions of these equations are known at present (see, for example, [1-12] and the papers cited there), in contrast, for instance, to the Einstein–Maxwell equations, for which dozens of accurate solutions have been found and investigated [13-18]. To investigate uniform spaces satisfying the Einstein–Dirac equations, we begin with the case of a massless spinor field that depends only on the time.

FIELD EQUATIONS

Consider a space of Bianci type I, with a metric of the form

\[g_{00} = 1, \quad g_{0\alpha} = 0, \quad g_{ij} = -\gamma_{ij}, \]

where \(\gamma_{ij} \) is the metric of a three-dimensional space with the signature (+, +, +). It is simple to establish that this space permits a three-parameter Abelian group of motions, and hence is a Steckel space of type (3.0). The orthogonal tetrad is chosen in the form

\[e_{(0)\lambda} = (1, 0, 0, 0), \quad e_{(1)\lambda} = (0, A, B, C), \]
\[e_{(2)\lambda} = (0, K, S, V), \quad e_{(3)\lambda} = (0, P, M, Z), \]

Using this tetrad, we construct the Newman–Penrose tetrad

\[l_i = \frac{1}{\sqrt{2}} (e_{(0)i} + e_{(1)i}), \quad n_i = \frac{1}{\sqrt{2}} (e_{(0)i} - e_{(1)i}), \]
\[m_i = \frac{1}{\sqrt{2}} (e_{(2)i} + ie_{(3)i}), \quad \bar{m}_i = \frac{1}{\sqrt{2}} (e_{(2)i} - ie_{(3)i}) \]

and obtain the following relations between the spin factors

\[\lambda = -\bar{\sigma}, \quad \nu = -\bar{\kappa}, \quad \pi = \bar{\tau}, \quad \tau = -\bar{\epsilon}. \]
\[\alpha = -\bar{\beta}, \quad \mu = -\rho = \bar{\mu}, \quad \bar{\alpha} = \frac{1}{2} (\bar{\tau} - \bar{\kappa}). \]
Letting $\chi = \partial_\beta x N/2$, we write the spin components of the Ricci tensor in the form

$$\omega_{00} = \rho - \mu^2 - \sigma \sigma - (e + e) - 2\kappa \kappa + \kappa \kappa,$$

$$\omega_{02} = -\sigma + 2\rho \sigma - \sigma^2 + \sigma (3\varepsilon - e),$$

$$\omega_{12} = \frac{1}{2} \left[\kappa - e + 3\tau \rho - e + \kappa + \kappa + 3\kappa \kappa + \sigma \kappa + \sigma \kappa \right].$$

\begin{equation}
(\phi_{11} - 3\lambda) = -2(e + e - \mu) - 2\rho^2 - 2\sigma^2 - 4\tau - 2\kappa - 2e - 2\kappa - 2(e + e),
\end{equation}

$$\phi_{01} = -\phi_{12}, \quad \phi_{22} = -\phi_{00}.$$

To obtain the Einstein–Weyl equations, we need to find the energy–momentum tensor of the two-component spinor field

$$T_{\alpha\beta} = \frac{\partial}{\partial x_\alpha} \psi_\beta + \frac{\partial}{\partial x_\beta} \psi_\alpha - \psi_\alpha \frac{\partial}{\partial x_\alpha} \psi_\beta - \psi_\beta \frac{\partial}{\partial x_\beta} \psi_\alpha.$$

Here

$$\nabla_{\alpha} \psi_\beta = D\psi_0 - e\psi_0 + \kappa \psi_1,$$

$$\nabla_{\alpha} \psi_1 = D\psi_1 - e\psi_1 + \psi_0 \psi_0 + \psi_0 \psi_0.$$