IN VITRO PREPARATION OF 68GA-LABELLED TRANSFERRIN

B. MAZIERE, C. LOC'H, D. COMAR

Commissariat à l' Energie Atomique,
Département de Biologie,
Service Hospitalier Frédéric Joliot
91406 Orsay (France)

(Received May 15, 1982)

Systematic investigations into the practical problems of labelling transferrin with 68Ga in vitro are presented. A chemical purification of the 68Ga generator eluate is described and the working conditions whereby several millicuries of 68Ga may be bound quantitatively onto a few milligrams of transferrin are defined.

Introduction

Regional blood volume is an important parameter for "in-vivo" regional metabolic studies by emission tomography. Activity seen in the cross-sectional slices represents the sum of tissue-incorporated tracer activity and blood tracer activity; to eliminate this latter component it is obviously necessary to know the blood volume present in the slice examined.

Using Positron Emission Tomography one accurate way to measure this regional blood volume is to label the circulating blood pool with the vascular tracer 11C--labelled carboxyhemoglobin1,2 but a more convenient method is to label red cells or blood proteins with 68Ga, one of the most attractive generator products for positron imaging applications.

Red blood cells can easily be labelled with 68Ga by the standard oxine technique3, but once the labelled cells are returned to the natural plasma the tracer is unfortunately very quickly eluted out.

Of blood proteins the molecule able most easily to label with a metallic tracer is transferrin (Tf).

Transferrin is a single-chain glycoprotein with a molecular weight of about 80,000 which, though preferential for Fe (III) can bind most transition metals including Co, Cr, Mn, Zn, Ni, Cu, V, In, and gallium.8

It is now well established that for each metal ion attached to the protein, an anion is bound concomitantly. Bicarbonate when available will preferentially occupy the anion binding site but may be replaced by a variety of chelates such as glycinate,9 oxalate, malonate, nitritotriacetate or perhaps citrate.10
The affinity of transferrin for metals in general and gallium in particular is sufficient theoretically to allow the few nanograms of 68Ga to be fixed without trouble on a protein mass small enough (< 10 mg) not to disturb the circulating transferrin pool (Tf plasmatic concentration : 2.5 mg/ml).

In reality however 68Ga is always somewhat contaminated by traces of stable metallic elements. Knowing that only about 8μg of metal (12×10^{-2} mole) is needed to saturate completely 5 mg of protein (6×10^{-2} mole) we realize that the chemical purity of generator eluate used play a capital part in the "in-vitro" transferrin labelling yield.

The purpose of this work was therefore to prepare a vascular pool tracer suitable for regional metabolic studies and to this end the working conditions whereby several millicuries of 68Ga may be fixed quantitatively on a few milligrams of Tf have been defined.

Materials and methods

Preparation of 68Ga

An SnO$_2$/HCl ionic 68Ga generator containing 10 mCi 68Ge was eluted under vacuum with 1N HCl. After elimination of the first ml of acid 2.5 ml eluate containing 7 mCi 68Ga were collected.

Purification of the 68Ga solution

To free the eluate from the metallic impurities always present, whatever the nature of the generator, a specific extraction of gallium by ether in reducing solution was adopted. The generator eluate, evaporated to dryness, was taken up in 1 ml 6N HCl then left in contact for 3 min at $80 \degree$C with about 300 mg silver wool. 68Ga was then extracted by two lots of 1 ml ether which were washed by 1 ml 6N HCl.

Preparation of the Tf-68Ga complex

The ether extract of 68Ga (about 6.5 mCi or 2.6×10^{-3} nmole), evaporated to dryness, was taken up in 100 μl of a 10^{-2} M citric acid solution brought to pH 3.35 by addition of sodium hydroxide (1 mole of citrate ion). 50 μl of a 1.2×10^{-3} M transferrin* solution (5 mg or 6×10^{-2} umole) were then added, bringing the final solution to a pH between 4.5 and 5.

After 15 minutes contact at room temperature more than 99% of the radioelement was bound to the protein, as shown by electrophoresis and gel filtration tests.

*Sigma: Apotransferrin