CHEMICAL AND RADIOCHEMICAL EVALUATION OF
THE PURITY OF 99mTc EXTRACTED BY MEK

D. V. S. NARASIMHAN, R. S. MANI

Isotope Division, Bhabha Atomic Research Centre,
Trombay, Bombay (India)

(Received October 15, 1975)

Solvent extraction separation of 99mTc from 99Mo using methyl ethyl ketone (MEK) has been found to be an effective method of obtaining 99mTc of medicinal purity from low specific activity 99Mo. The authors have investigated the effect of alkali and molybdate concentration on the extraction of 99Mo and 99mTc into methyl ethyl ketone. The possibility of methyl ethyl ketone forming enol and condensation products and its effect on the final extraction efficiency and purity of 99mTc has been studied. Sodium molybdate has been found to have a good salting out effect on 99mTc pertechnetate and hence 99mTc extraction can be better accomplished from low specific activity 99Mo solutions. The ketone seems to form traces of condensation products in the extraction procedure. These have been found to be coextracted with 99mTc into MEK but did not affect the extractability of 99mTc. It was observed that neutral alumina column removes these condensation products from MEK containing 99mTc. Alternately these could be filtered off by acidification of the final aqueous 99mTc solution. The studies indicate that under optimum experimental conditions methyl ethyl ketone separates 99mTc from 99Mo with high efficiency and yields 99mTc of high purity suitable for use in nuclear medicine in the form of various labelled compounds.

Introduction

99mTc has been extensively used in diagnostic nuclear medicine and gives superior scintiscans with less radiation exposure to patients. It is obtained by the beta decay of reactor-produced 99Mo or by the proton bombardment (in a cyclotron) of enriched 100Mo. However, production of 99Mo in the reactor by the neutron irradiation of 98Mo, natural or enriched, or by fission of 235U or 239Pu is the method preferred for obtaining large quantities of 99Mo. The separation of 99mTc from 99Mo is
achieved chiefly using three methods: 4 (a) column chromatography using alumina, (b) sublimation of volatile technetium heptoxide, and (c) selective extraction of 99mTc into methyl ethyl ketone (MEK). The chromatographic method using alumina has been well explored and sterile generators for use in hospitals are available commercially. 5

The solvent extraction procedure offers several advantages where low specific activity 99Mo has to be used. Using this procedure it is possible to obtain large quantities of 99mTc with high yield and radioactive concentration, free from radionuclidic impurities often found in 99mTc obtained using alumina. 6 However, this procedure has not been investigated in as much detail as the chromatographic procedures and interest in this has been growing with the routine production of instant 99mTc by several commercial suppliers. Even though it has been observed in practice that from alkaline solutions of 99Mo-molybdate, methyl ethyl ketone extracts 99mTc-pertechnetate efficiently and yields a final product of medicinal purity, systematic data on the distribution of both 99mTc and 99Mo into MEK from solutions of varying molybdate and sodium hydroxide concentrations have been lacking. 99mTc obtained by MEK extraction procedure has been reported to give, at times, poor labelling yields in the preparation of various 99mTc labelled radiopharmaceuticals, whereas 99mTc obtained from alumina based generator give high labelling efficiency. 7, 8 Instant 99mTc' samples supplied by commercial sources which are reportedly prepared by the MEK extraction procedure has been found to contain high levels of 99Mo impurity. 9 The possibility of methyl ethyl ketone, which comes into contact with concentrated alkali, forming aldol condensation products and their effect on the extractability and purity of 99mTc have also not been studied. 10 The authors have studied here the