EXACT SOLUTION OF ONE BOUNDARY-VALUE PROBLEM

A. O. Botyuk

UDC 517.944

We study the boundary-value periodic problem
\[u_{tt} - u_{xx} = F(x, t), \quad u(0, t) = u(\pi, t) = 0, \quad u(x, t + T) = u(x, t), \quad (x, t) \in \mathbb{R}^2. \]

By using the Vejvoda–Shtedry operator, we determine a solution of this problem.

In [1, 2], it was proved that the problem
\[u_{tt} - u_{xx} = F(x, t), \quad u(0, t) = u(\pi, t) = 0, \quad u(x, t + T) = u(x, t), \quad (x, t) \in \mathbb{R}^2, \]
may have a classical solution at least in three spaces \(A_1, A_2, \) and \(A_3 \) of functions that correspond to the periods
\[T_1 = \frac{(2p - 1)\pi}{s}, \quad T_2 = \frac{4\pi p}{2s - 1}, \]
\[T_3 = \frac{2\pi(2p - 1)}{2s - 1}, \quad p \in \mathbb{Z}, \quad s \in \mathbb{N}. \]

We consider the following spaces of functions: \(C \) is a space of functions of two variables \(x \) and \(t \), which are continuous and bounded on \(\mathbb{R}^2 \); \(G \) is a space of functions of two variables, which are continuous and bounded on \(\mathbb{R}^2 \) together with the derivative with respect to \(t \); \(Q_T \) is a space of functions \(T \)-periodic with respect to \(t \) on \(\mathbb{R}^2 \); in addition, we consider a subspace \(A_1^0 \) of the space \(A_1 \):
\[A_1^0 = \{ F: F(x, t) = F(\pi - x, t) = F(x, t + T_1) = -F(x, t) = -F(x, -t) \}, \]
where \(T_1 = \pi / q, \quad q \in \mathbb{N} \).

For functions \(F \in C \), we consider the operator

\[(SF)(x, t) = \frac{1}{4} \int_0^\pi d\xi \int_0^\pi \{ F(\xi, t + \xi - \eta) + F(\xi, t - \xi + \eta) \} d\eta \]
\[+ \frac{1}{4} \int_0^\pi d\xi \int_0^\pi \{ F(\xi, t + \xi - \eta) + F(\xi, t - \xi + \eta) \} d\eta \]
The following statements are true:

Lemma 1. For any function \(F \in G_1 \cap Q_T \), the function \(u = SF \) satisfies Eq. (1) and condition (3):

\[
(SF)(x, -t) = -(SF)(x, t),
\]

(6)

\[
(SF)(x, t + T_1) = (SF)(x, t),
\]

(7)

\[
(SF)(\pi - x, t) = (SF)(x, t).
\]

(8)

Lemma 2. If \(F \in A_1^0 \cap C \), then

\[
\int_{-\pi}^{\pi} d\xi_1 \int_{t-x}^{t+x} F(\xi_1, \tau) d\tau = 0.
\]

The proofs of Lemmas 1 and 2 can be obtained by direct verification.

Theorem 1. If \(F \in A_1^0 \cap C \), then \(u = SF \in A_1^0 \).

Proof. Since Lemma 2 is true, to prove Theorem 1, it remains to show that \((SF)(-x, t) = -(SF)(x, t) \).

Indeed, since the operator \(S \) admits the representation

\[
(SF)(x, t) = -\frac{1}{2} \int_{0}^{\pi} d\xi_1 \int_{t-x}^{t+x} F(\xi_1, \tau) d\tau + \frac{1}{4} \int_{0}^{\pi} d\xi_1 \int_{t-x}^{t+x} F(\xi_1, \tau) d\tau,
\]

we have on the basis of Lemma 3 that

\[
(SF)(-x, t) = -\frac{1}{2} \int_{t-x}^{t+x} F(-\xi_1, \tau) d\tau + \frac{1}{4} \int_{t-x}^{t+x} F(-\xi_1, \tau) d\tau
\]

\[
= \frac{1}{2} \int_{0}^{\pi} dy \int_{t-x+y}^{t-x-y} F(-y, \tau) d\tau - \frac{1}{4} \int_{0}^{\pi} dy \int_{t-x+y}^{t-x-y} F(-y, \tau) d\tau
\]

\[
= \frac{1}{2} \int_{0}^{\pi} dy \int_{t-x+y}^{t-x-y} F(y, \tau) d\tau - \frac{1}{4} \int_{0}^{\pi} dy \int_{t-x+y}^{t-x-y} F(y, \tau) d\tau
\]

\[
= \frac{1}{2} \int_{0}^{\pi} dy \int_{t-x+y}^{t-x-y} F(y, \tau) d\tau + \frac{1}{4} \int_{0}^{\pi} dy \int_{t-x+y}^{t-x-y} F(y, \tau) d\tau
\]

\[
= \frac{1}{4} \int_{0}^{\pi} dy \int_{t-x+y}^{t-x-y} F(y, \tau) d\tau + \frac{1}{4} \int_{0}^{\pi} dy \int_{t-x+y}^{t-x-y} F(y, \tau) d\tau
\]

\[
= -(SF)(x, t).
\]