REMARK ON THE LEBESGUE CONSTANT IN THE ROGOSINSKI KERNEL

V. K. Dzyadyk and I. A. Shevchuk

For every \(n \), we compute the Lebesgue constant of Rogosinski kernel with any preassigned accuracy.

Consider the Lebesgue constant \(L_n \) of the Rogosinski kernel, i.e., the number [1, pp. 121–123]

\[
L_n = \frac{1}{2\pi} \sin \frac{\pi}{2n} \int_{-\pi}^{\pi} \frac{\cos nt}{\cos t - \cos (\pi/2n)} \, dt, \quad n \in \mathbb{N}.
\]

Korneichuk proved that

\[
L_n = \frac{2}{\pi} \int_0^\pi \sin t \, dt - r_n,
\]

where

\[
0 < r_n < \frac{2}{\sqrt{3}(2n+1)}.
\]

One of the authors (V. K. Dzyadyk) proved that

\[
0 < r_n < \frac{5}{12} \frac{1}{n^2}.
\]

A simple corollary of the reasoning of [1, pp. 121–123] and the Euler–Maclaurin summation formula is Proposition 1, which allows one to calculate \(r_n \) for all \(n \) with any preassigned accuracy. For example,

\[
r_n = \frac{1}{6n^2}
\]

with accuracy \((4/15)(2n)^{-4}\);

\[
r_n = \frac{1}{6n^2} + \frac{\pi^2 - 6}{360} \frac{1}{n^4}
\]

with accuracy \((8/63)(2n)^{-6}\);

\[
r_n = \frac{1}{6n^2} + \frac{\pi^2 - 6}{360} \frac{1}{n^4} + \frac{\pi^4 - 20\pi^2 + 120}{15120} \frac{1}{n^6}
\]
with accuracy \((2/27)(2n)^8, \ldots, \text{etc.}\)

Computation of \(r_n\) can be reduced to obtaining the approximation error by the trapezium quadrature formula of the integral of the following function:

\[
f(x) := \frac{\sin x}{x},
\]

\(f(0) := 1,\) since

\[
r_n = \frac{2}{\pi} \int_0^\pi f(t)\,dt - \frac{2}{\pi} \sum_{j=0}^{n-1} \frac{1}{j} \left(f\left(\frac{j\pi}{n}\right) + f\left(\frac{j+1}{n}\pi\right)\right) \frac{\pi}{n}
\]

(1)

according to [2, p. 123, (22)].

Therefore, it is natural to use the Euler–Maclaurin summation formula [3, p. 136, (4.8)–(4.10)]: if a function \(g\) has \(2m+2\) continuous derivatives on \([0, n]\), then

\[
\sum_{j=0}^{n} g(j) = \int_0^n g(t)\,dt + g(0) + g(n) + \sum_{k=1}^{m} \frac{B_{2k}}{(2k)!} \left(g^{(2k-1)}(n) - g^{(2k-1)}(0)\right) + \frac{n^{2m+2}}{(2m+2)!} g^{(2m+2)}(0n),
\]

(2)

\(m, n = 1, 2, \ldots, 0 < \theta < 1,\) where

\[
B_{2k} = 2(-1)^{k+1}(2k)! \frac{1}{(2\pi)^{2k}} \sum_{r=1}^{n} \frac{1}{r^{2k}}
\]

(3)

are the Bernoulli numbers [3, p. 747, (21.5)–(21.16)].

The equality

\[
f^{(j)}(x) = \frac{1}{x^{j+1}} \int_0^x t^j \cos\left(t + \frac{j\pi}{2}\right)\,dt, \quad j = 0, 1, 2, \ldots,
\]

(4)

can easily be proved by induction, whence

\[
|f^{(2k)}(t)| < \frac{1}{2k+1}, \quad 0 < t < \pi.
\]

In particular, taking (3) into account, we obtain

\[
\left| \frac{B_{2m+2}}{(2m+2)!} f^{(2m+2)}(0) \right| \leq \frac{2}{2^{2m+2}} \frac{1}{2m+3} \to 0, \quad m \to \infty.
\]

(5)

Relations (1), (2), and (5) (in view of the equality \(f^{(2k-1)}(0) = 0,\) which follows from the evenness of the function \(f\)) prove the validity of the first part of the following assertion:

Proposition 1. The equality