THE DECOMPOSITION OF THE OXALATE PRECURSOR
AND THE STABILITY AND REDUCTION OF THE
YBa$_2$Cu$_4$O$_8$ SUPERCONDUCTOR STUDIED BY TG
COUPLED WITH FTIR AND BY XRD

J. Mullens, A. Vos, A. De Backer, D. Franco, J. Yperman and
L. C. Van Poucke

LIMBURG UNIVERSITY CENTER, INSTITUTE OF MATERIALS RESEARCH,
LABORATORY OF INORGANIC AND PHYSICAL CHEMISTRY, B-3590 DIEPENBEEK,
BELGIUM

The 124 superconductor YBa$_2$Cu$_4$O$_8$ was prepared from the oxalate precursor Y$_2$(C$_2$O$_4$)$_3$
4BaC$_2$O$_4$-8CuC$_2$O$_4$-xH$_2$O at one atmosphere oxygen pressure. In O$_2$ the precursor decomposes in
one step at 300°C and more gradually (300–600°C) in Ar. The stability of the superconductor is
strongly dependent on the gas atmosphere: in O$_2$ and in air there is no significant weight change as
long as the temperature does not exceed 800°C, whereas in a 1% O$_2$-99% N$_2$ mixture decomposi-
tion starts at about 670°C with the formation of CuO and YBa$_2$Cu$_3$O$_x$ with x<7. The reduction of
YBa$_2$Cu$_4$O$_8$ in a 5% H$_2$-95% Ar mixture takes place in at least four major steps with formation of
products such as Y$_2$O$_3$, BaO, Cu$_2$O, Cu, BaY$_2$O$_5$ and Ba$_4$Y$_2$O$_7$.

Keywords: oxalate, precursor, superconductor

Introduction

Recently the oxalate coprecipitation technique has been used for preparation
of the ‘124’ superconductor at one atmosphere oxygen pressure [1]. A general
method for computing the starting concentrations for preparing the precursor in
the correct proportions has been described previously [2].

TG coupled with FTIR gives information about the decomposition products
and the evolved gases.
An important characteristic of the YBa$_2$Cu$_4$O$_8$ superconductor is its thermally stable oxygen content.

Several methods, such as TG in H$_2$/Ar [3, 4], spectroscopic analysis, coulometric determination [5, 6] and potentiometric titrations [7, 8, 9], have been developed to determine the oxygen content of a superconducting material. In this paper, the following experiments carried out with TG coupled with FTIR, are described: the decomposition of the oxalate precursor Y$_2$(C$_2$O$_4$)$_3$·4BaC$_2$O$_4$·8CuC$_2$O$_4$·xH$_2$O in O$_2$ and Ar; the stability of the YBa$_2$Cu$_4$O$_8$ superconductor in different gas atmospheres with various oxygen contents (O$_2$; air; 1% O$_2$-99% N$_2$; N$_2$); and the reduction of YBa$_2$Cu$_4$O$_8$ in 5% H$_2$-95% Ar.

XRD is used to obtain information on the intermediate formed products.

Experimental

Materials

The oxalate precursor was made by adding a solution of the metal nitrates to a solution of H$_2$C$_2$O$_4$ and (NH$_4$)$_2$C$_2$O$_4$. Sintering of the oxalate took place in an oxygen flow at 800°C [1].

For investigation of the individual oxides, the following products were used: CuO (Merck, extra pure), BaO (Matthey reagent 95%), and Y$_2$O$_3$ (made at 900°C from a Y$_2$(C$_2$O$_4$)$_3$·9H$_2$O precursor).

Methods

Thermal analysis measurements were carried out with a TA Instruments 2000-951 (former DuPont), coupled with a Bruker IFS 48 FTIR spectrometer [10, 11] working at a resolution of 8 cm$^{-1}$.

A Siemens D5000 diffractometer was used to record XRD spectra. This diffractometer was equipped with a high-temperature unit HTK10 for measurements up to 1600°C.

Oxygen content and copper valence state were determined by iodometric titrations as described elsewhere [7–9].

Results and discussion

Decomposition of the oxalate precursor Y$_2$(C$_2$O$_4$)$_3$·4BaC$_2$O$_4$·8CuC$_2$O$_4$·xH$_2$O

Figure 1 shows TG plots of the oxalate recorded in O$_2$ and Ar. FTIR spectra of the evolved gases are given in Figs 2a and 2b.