CONTINUUM LIMIT IN THE FERMIONIC HIERARCHICAL MODEL

M. D. Missarov

We discuss the problem of rigorously constructing the continuum limit in the fermionic hierarchical model. The continuum limit constructed as the limit of fields on the refined hierarchical lattices is a field on a p-adic continuum. We investigate the problem of reconstructing the coupling constants of the continuum model from the coupling constants of the discretized model.

As noted in [1-2], p-adic field-theory models are a natural continuum generalization of the hierarchical Dyson models [3-6]. The p-adic models arise in a wide range of problems in mathematical physics [7, 8].

In this paper, we consider the problem of constructing the continuum limit in the framework of the so-called fermionic hierarchical model (see [9-11]). The corresponding problem for the usual lattice models in quantum field theory is the basic (and complicated) problem of the constructive field theory [12, 13]. It is known that the Gaussian part is fixed in these models (being given, for example, by a lattice analogue of the Laplace operator). The existence of a continuum limit means that there are limits of the correlation functions as the lattice spacing tends to zero; the coupling constants of the intermediate lattice models then depend on the lattice spacing and tend to infinity under the cutoff removal.

A peculiarity of our model is that the Gaussian part is given by the action

\[H_0(\psi^*; \alpha) = c(\alpha) \int |x - y|^{-\alpha d} (\bar{\psi}_1(x)\psi_1(y) + \bar{\psi}_2(x)\psi_2(y)) \, dx \, dy, \]

where \(x \) and \(y \) are \(d \)-dimensional p-adic arguments, \(dx \) is the corresponding Haar measure, \(\bar{\psi}^*(x) = (\bar{\psi}_1(x), \psi_1(x), \bar{\psi}_2(x), \psi_2(x)) \) is a four-component Grassmann-valued field (whose components are the generating elements of a Grassmann algebra), \(|\cdot| \) is the p-adic norm, \(c(\alpha) \) is a normalization constant, and \(\alpha \) is a real parameter. This Hamiltonian determines the so-called self-similar (scale-invariant) fermionic field with the self-similarity parameter \(\alpha \). The value \(\alpha = 1 + 2/d \) gives rise to a p-adic analogue of the Hamiltonian that is given by the Laplace operator in the real case. We note that in contrast to the real case, the p-adic version with \(\alpha = 1 + 2/d \) describes a model with long-range interaction.

The non-Gaussian part is given by the Hamiltonian

\[H_1 = r \int (\bar{\psi}_1(x)\psi_1(x) + \bar{\psi}_2(x)\psi_2(x)) \, dx + g \int \bar{\psi}_1(x)\psi_1(x)\bar{\psi}_2(x)\psi_2(x) \, dx. \]

Our model can be viewed as a fermionic analogue of the hierarchical \(\varphi^4 \)-model, its non-Gaussian part simulating the Gross-Neveu model [14, 15]. We also note that a certain degenerate version of the fermionic hierarchical model was considered in [16].

We study the discrete (hierarchical) version of the Hamiltonian \(H_0 + H_1 \). The Gaussian part of the hierarchical model is invariant under transformations of the Kadanoff-Wilson block-spin renormalization group (RG) with the parameter \(\alpha \). The RG action in the coupling-constant space is explicitly evaluated [9], and the inverse mapping also exists. This is the main simplifying point in the problem of constructing the continuum limit in our model.

1 Kazan State University, Kazan, Russia, e-mail: Moukadas.Missarov@ksu.ru.
In particular, we show that for those values of α, r, and g considered in [10] that allow the existence of the thermodynamic limit in the hierarchical model, the correlation-function limit as the hierarchical-lattice spacing goes to zero also exists. As follows from the results of [10] and from computer experiments, the existence domain of the thermodynamic limit in the (r, g) plane comprises a full-measure set in \mathbb{R}^2 if $\alpha > 1$.

A new feature is that the limit of the lattice field-theory coupling constants as the lattice spacing goes to zero exists for $\alpha > 2$. This limit determines the continuum field theory whose discretization leads to the original hierarchical model.

Let T be the mapping that associates the coupling constants of the limiting continuum theory with the coupling constants r and g of the original hierarchical model. For $\alpha > 2$, the mapping T satisfies the commutation relation

$$TR = ST,$$

where R is the hierarchical RG transformation in the (r, g) plane and S is the diagonal matrix given by the eigenvalues of the differential of R at the origin. It then follows that the mapping T is inverse to the normalizing transformation P defined by the functional equation

$$RP = PS$$

The mapping P can be viewed as a discretization operator that assigns the coupling constants of the discretized field to the coupling constants of the continuum field (see [17] for more details). Therefore, $T = P^{-1}$.

As known from the general theory of normal forms [18], however, the mapping P (and also P^{-1}) can be determined not only for $\alpha > 2$ but also for the nonresonance values $\alpha < 2$ (a more precise statement is given below) and is given by a convergent power series in r and g in a neighborhood of the origin. Thus, the definition of T can be extended to the domain $1 < \alpha < 2$ except for a discrete series of values of α; T then determines the coupling constants of the continuum theory corresponding to the original hierarchical model. However, these coupling constants cannot be determined via a direct limiting process and, in particular, cannot be determined at resonance values of α. A similar picture may also be true for bosonic models in the real case if the kernel of the Gaussian part is given by a power of the Laplace operator, which itself corresponds to the resonance value. We note that a series of resonance values of α for functional equation (2) coincides with the series of ultraviolet poles of the p-adic Feynman amplitudes in the continuum version of the model.

We now recall several definitions [9]. Let Q_p be the p-adic number field and $| \cdot |_p$ be the p-adic norm on Q_p. The fractional part of a p-adic number $x = c_{-n}p^{-n} + \cdots + c_{-1}p^{-1} + c_0 + c_1p + \ldots$ is denoted by $\{x\}$, i.e.,

$$\{x\} = c_{-n}p^{-n} + \cdots + c_{-1}p^{-1}.$$

For $x = (x_1, \ldots, x_d) \in Q_p^d$, we set

$$|x|_p = \max_i |x_i|_p, \quad \{x\} = (\{x_1\}, \ldots, \{x_d\}).$$

Then the discrete set

$$T^d_p = \{x \in Q_p^d : x = \{x\}\}$$

can be viewed as a hierarchical lattice with the elementary cell size $n = p^d$ and with the hierarchical distance $d(i, j) = |i - j|_p$, $i, j \in T^d_p$.

We consider a four-component fermionic field $\psi^*(x) = (\psi_1(x), \psi_1(x), \psi_2(x), \psi_2(x))$, $x \in Q_p^d$. The group of scaling transformations is defined by

$$(S_\lambda(\alpha) \psi^*)(x) = |\lambda|^{(1-\alpha/2)d} \psi^*(\lambda x),$$