A Discrete Singular Integral Operator
(In Memory of Professor Long Ruilin)

Fan Dashan
(Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA)
(Email: fan@alpha1.csd.uwm.edu)

Lu Shanzhen
(Department of Mathematics, Beijing Normal University, Beijing 100875, China)
(Email: lusz@sun.ihep.ac.cn)

Pan Yibiao*
(Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, PA 15260, USA)
(Email: yibiao@tomato.math.pitt.edu)

Abstract Suppose that \(\{\alpha_k\}_{k=-\infty}^{\infty} \) is a Lacunary sequence of positive numbers satisfying \(\inf_k \alpha_{k+1}/\alpha_k = \alpha > 1 \) and that \(\Omega(y') \) is a function in the Besov space \(B_{1,1}^{0,1}(S^{n-1}) \) where \(S^{n-1} \) is the unit sphere on \(\mathbb{R}^n (n \geq 2) \). We prove that if \(\int_{S^{n-1}} \Omega(y')d\sigma(y') = 0 \) then the discrete singular integral operator

\[
T_\Omega f(x) = \sum_{k=-\infty}^{\infty} \int_{S^{n-1}} f(x - \alpha_k y')\Omega(y')d\sigma(y')
\]

and the associated maximal operator

\[
T_\Omega^* f(x) = \sup_N \left| \sum_{k=N}^{\infty} \int_{S^{n-1}} f(x - \alpha_k y')\Omega(y')d\sigma(y') \right|
\]

are both bounded in the space \(L^2(\mathbb{R}^n) \).

The theorems in this paper improve a result by Duoandikoetxea and Rubio de Francia[1] in the \(L^2 \) case.

Keywords Singular integral, Besov space, Rough kernel
1991MR Subject Classification 42B20
Chinese Library Classification O174.3

Received October 18, 1996, Accepted March 31, 1997
Supported in part by a grant from the NSF of China
* Supported in part by a grant from the USA National Science Foundation
1 Introduction

Let y' be a point on the unit sphere S^{n-1} on $\mathbb{R}^n (n \geq 2)$ and $d\sigma(y')$ be the induced Lebesgue measure on S^{n-1}. In [1], Duoandikoetxea and Rubio de Francia considered the discrete singular integral

\[T_n(f)(x) = \sum_{k \in \mathbb{Z}} \int_{S^{n-1}} f(x - 2^k y') \Omega(y') d\sigma(y'), \quad (1.1) \]

where $\Omega(y')$ is a function in the Sobolev space $L^1_\beta(S^{n-1})$ for some $\beta > 0$, and proved

\[\|T_n(f)\|_p \leq C \|f\|_p \quad \text{for any} \quad p \in (1, \infty). \quad (1.2) \]

The main purpose of this article is to prove the above boundedness property under a weaker condition on $\Omega(y')$ in the case of $p = 2$. We let \{\alpha_k\}_{k=-\infty}^{\infty} be a Lacunar \gamma sequence of positive numbers satisfying $\inf_{k} \alpha_{k+1}/\alpha_k = \gamma > 1$ and let $\Omega(y')$ be a suitable function on S^{n-1}. The truncated discrete singular integral $T_{n,N}f(x)$ is defined by

\[T_{n,N}f(x) = \sum_{k \geq N} \int_{S^{n-1}} f(x - \alpha_k y') \Omega(y') d\sigma(y') \quad (1.3) \]

and the maximal operator T_n^γ is defined by

\[T_n^\gamma f(x) = \sup_{N \in \mathbb{Z}} |T_{n,N}f(x)|. \]

We have the following theorem.

Theorem 1 If $\Omega \in B^{0,1}_1(S^{n-1})$ satisfying $\int_{S^{n-1}} \Omega(y') d\sigma(y') = 0$, then

(i) $\|T_{n,N}f\|_{L^2(\mathbb{R}^n)} \leq C \|f\|_{L^2(\mathbb{R}^n)} \|\Omega\|_{B^{0,1}_1(S^{n-1})}$,
(ii) $\|T_n^\gamma f\|_{L^2(\mathbb{R}^n)} \leq C \|f\|_{L^2(\mathbb{R}^n)} \|\Omega\|_{B^{0,1}_1(S^{n-1})}$,

where C is a constant independent of f, N and Ω.

Remark Duoandikoetxea and Rubio de Francia obtained the L^p boundedness of $T_{n,N}$ under the assumption $\Omega \in L^1_\beta(S^{n-1})$ for some $\beta > 0$. Here we point out that

\[\bigcup_{\beta > 0} L^1_\beta(S^{n-1}) \subset B^{0,1}_1(S^{n-1}) \quad (1.4) \]

and the inclusion is proper. To see this, we consider the inhomogeneous Triebel-Lizorkin spaces $F^{\alpha,q}_p$ and inhomogeneous Besov spaces $B^{\alpha,q}_p$ on S^{n-1} which are defined by using a standard method (see [2]). By the compactness of S^{n-1} we have

\[B^{0,1}_1(S^{n-1}) \supset \bigcup_{p>1, \alpha > 0} B^{\alpha,2}_p(S^{n-1}) \quad (1.5) \]

and the inclusion is proper. Since for any $p > 1$ and $\alpha > 0$, $B^{\alpha,2}_p \supset F^{\alpha,2}_p = L^p_\alpha$, we obtain

\[\bigcup_{p>1, \alpha > 0} L^p_\alpha(S^{n-1}) \subset B^{0,1}_1(S^{n-1}). \quad (1.6) \]

By the Sobolev imbedding theory, (1.4) follows from (1.6).

This paper is organized as follows. In the second section we will give the precise definition of the Besov space $B^{0,1}_1(S^{n-1})$, as well as some lemmas which will be used to prove the main theorem. Theorem 1 will be proved in section 3. In the fourth section, we will give an extension of Theorem 1 that is related to polynomial phases.