The Existence of Minimal Honest Polynomial Degree Below and Recursively Enumerable Degrees

Yang Dongping

Abstract. In [1] Homer introduced the honest polynomial reducibility and proved that under this new reducibility a set of minimal degree below 0^* is constructed under the assumption that $P = NP$. In this paper we will prove that under the same assumption a set of minimal degree can be constructed below any recursively enumerable degrees. So under the honest polynomial reducibility a set of low minimal degree does exist.

In [1] Homer introduced the honest polynomial reducibility and proved that under this new reducibility a set of minimal degree below 0^* is constructed under the assumption that $P = NP$. In this paper we will prove that under the same assumption a set of minimal degree can be constructed below any recursively enumerable degrees. So under the honest polynomial reducibility a set of low minimal degree does exist.

We consider computations of oracle Turing machines. Without loss of generality the tape alphabet of all oracle Turing machines is $\Sigma = \{0, 1\}$ and all languages will be subset of Σ^*. For $x \in \Sigma^*$, $|x|$ denotes the length of x. We use λ to denote the empty word.

For any oracle Turing machine T and set S let T^S denote machine T with oracle S. Oracle Turing machines run in polynomial time if there is a polynomial p such that for any oracle set and any input of length n the machine halts in $p(n)$ steps. A set A is Turing reducible to B in polynomial time ($A \leq_T B$) if there is a polynomial time oracle Turing machine T with oracle B such that for all $x \in \Sigma^*$, $x \in A$ iff T^B accepts x. The oracle machine T is sometimes referred to as a reduction procedure as it reduces A to B.

A is honest Turing reducible to B ($A \leq_{h} B$) if there is an oracle Turing machine M such that

1. $A \leq_{h} B$ via oracle Turing machine M, and
2. there is a polynomial q such that for all x, if $M^B(x)$ queries oracle B about a string y then $q(|y|) \geq |x|$.

We can define the equivalence relation \equiv_{h} by $A \equiv_{h} B$ iff $A \leq_{h} B$ and $B \leq_{h} A$. The equivalence classes of this relation are called honest Turing degrees.

We say that a set C is minimal with respect to \leq_{h} if (1) $C \notin P$. (2) for any set D if $D \leq_{h} C$ and $C \leq_{h} D$ then $D \in P$. A minimal degree for \leq_{h} is one which is made up of minimal sets.

Let $\{P_i\}$, $i = 0, 1, 2, \ldots$, be the enumeration of all polynomial time sets.

Consider an enumeration $\{M_i\}$, $i = 1, 2, \ldots$, of polynomial time bounded oracle Turing machines. Say that M_i runs in polynomial time p_i. For M_i we have a polynomial $q_i(x) = x'$. We define a \leq_{h} reduction procedure by, for input x, M_i carries out its p_i time bounded computation for input x with the added constraint that whenever M_i on input x queries its oracle about a string y, the
procedure first checks if $q_{a}(b) \geq |a|$. If it is, the computation proceeds as usual; if not, the computation halts and rejects x. Let $L(M_{i}, A)$ be the language accepted by M_{i} using oracle set A.

By a string here we mean an element of Σ^{*}. Concatenation of strings is indicated by juxtaposition. Let $a(k) = \text{the } (k + 1) \text{ th bit of } a$, so $a = a(0) \ldots a(|a| - 1)$. Two strings a and β are incompatible if $\exists k < |a| \land k < |\beta| \land a(k) \neq \beta(k)$. Otherwise they are said to be compatible. α extends $\beta (\beta \subset a)$, if a and β are compatible and $|\beta| < |a|$. We write $\beta \preceq a$ to mean α extends β or they are equal.

A tree is a partial function T from Σ^{*} to Σ^{*} satisfying

1. $\forall a \text{ if } T(a0)$ and $T(a1)$ are defined then they extend $T(a)$ and are incompatible.
2. $\forall a \text{ if } T(a0)$ is defined then $T(a0)$ extends $T(a)$.
3. $\forall a, \beta \text{ if } T(a)$ is defined and $\beta \subset a$ then $T(\beta)$ is defined.

A node ξ of T is an element of the range of T. The trees we construct will have the property that for every node $T(a)$ either both $T(a0)$ and $T(a1)$ will be defined or only $T(a0)$ will be defined. $T(a0)$ and $T(a1)$ are called the immediate extensions of $T(a)$.

A string a is on $T(a \preceq T)$ iff it is a node of T: A tree T' is a subtree of tree T if every string on T' is on T. Let α be a string and X be a tally set (that is $X \preceq \{1\}^{*}$). We write $a \preceq X$ to mean $\forall k < |a| (a(k) = 1 \text{ iff } P^{1} _k \in X)$. We say that a tally set X is on T if $a \preceq X$ for infinitely many a on T.

A tree T is uniform if $\forall a_{0}, a_{1}$ on $T \forall \beta$ on T if $|a_{0}| = |\alpha_{1}| \land \beta$ is an extension of a_{0}, then $\alpha_{1}\beta(|a_{0}|) \ldots \beta(|\beta| - 1)$ is the extension of α_{1} on T. Intuitively T is uniform if for a_{0}, a_{1} on T of the same length, they both have the same number of extensions and these extensions agree on all bits past $|a_{0}| - 1$.

A tree T has close extensions if there is a polynomial b such that $\forall a \text{ on } T$ (the length of immediate extension(s) on T of a are bounded above by $b(|a|)$).

A tree T is called acceptable if T is uniform, T has close extensions, the relation "α is on T" is in P, and every node of T has two incompatible extensions on T.

Let C be a non-recursive recursively enumerable set and let $k: N \rightarrow N$ be a one-one recursive function enumerating C. Let $C^{s} = \{k(x) \mid x < s\}$.

We will construct a set $A \subseteq r C$ by recursive approximation. Thus we define a recursive sequence of strings $\{a_{s} \mid s \in N\}$ and let $A(x) = \lim_{s} a_{s}(x)$ for all $x \in N$. We will subject the sequence $\{a_{s} \mid s \in N\}$ to the following constraint

(4) $x, s \in N|C^{s}| x = C^{s}\downarrow x \rightarrow a_{s}(x) \preceq A$.

According to the Yates permitting lemma, (4) will guarantee that $A \subseteq r C$.

Besides (4) the set A should meet the following requirements for all e

S_{e}: $A \neq P_{e}$, P_{e} is the $(e + 1)$th polynomial time set.

R_{e}: Either $I(M_{e}, A) \in P$ or $A \preceq I(M_{e}, A)$.

Let T, T^{*} be finite uniform trees and have close extension such that $T^{*} \preceq T$. Let $e, s \in N$ and string α be given. Define the tree $T^{*} = PSp(T, T^{*}, \alpha, e, s)$ as follows.

$$
T^{*}(\xi) = \begin{cases}
T^{*}(\xi) & \text{if } T^{*}(\xi) \downarrow, \\
T(\lambda) & \text{if } T(\lambda) \downarrow \land T^{*}(\xi) \uparrow \land \xi = \lambda, \\
\uparrow & \text{if } T(\lambda) \uparrow \land \xi = \lambda.
\end{cases}
$$