ON BERTINI’S THEOREM

GENG XU

We study the singularities of a generic element of a linear system of divisors on a smooth projective variety inside the base locus of the linear system, and give a generalization of Bertini’s theorem.

Received August 9, 1995; in revised form December 19, 1995

Let X be a smooth projective variety with $\dim X \geq 2$. If

$$|L| = \{\lambda_0 Q_0 + \lambda_1 Q_1 + \cdots + \lambda_k Q_k | (\lambda_0, \cdots, \lambda_k) \in \mathbb{P}^k\}$$

is a k-dimensional linear system of divisors without fixed component on X, then Bertini’s theorem [B] says that; (1). The generic element $D \in |L|$ is non-singular away from the base locus B of $|L|$. (2). If $P \in X$ is an arbitrary point on X and $D \in |L|$ is a generic element, then

$$\inf_{i \in \{0, 1, \cdots, k\}} \text{mult}_P Q_i \geq \text{mult}_P D - 1,$$

in particular, if $P \notin B$ the base locus of $|L|$, that is, $P \notin Q_i$ for some i, then we must have $\text{mult}_P D \leq 1$, that is, the generic element D is smooth at any point P outside of the base locus B of $|L|$. Therefore, one can view statement (1) in Bertini’s theorem as a special case of (2).

In this paper, we study the question of what type of singularities precisely a generic element of a linear system can afford inside the base locus, and give a generalization of statement (2) in Bertini’s theorem.

\[^1\text{Partially Supported by NSF grant DMS-9596097}\]
In order to do that, we need to first fix some notations. If \(D \in |L| \) is a reduced and irreducible divisor on \(X \), then in general \(D \) is singular. According to Hironaka [H], we have a desingularization of \(D \):

\[X_{m+1} \xrightarrow{\pi^{m+1}} X_m \xrightarrow{\pi^m} \cdots \xrightarrow{\pi_2} X_1 \xrightarrow{\pi_1} X_0 = X, \]

so that the proper transform \(\tilde{D} \) of \(D \) in \(X_{m+1} \) is smooth. Here \(X_j \xrightarrow{\pi_j} X_{j-1} \) is the blow-up of \(X_{j-1} \) along a \(\nu_{j-1} \)-dimensional submanifold \(Y_{j-1} \) with \(E_{j-1} \subset X_j \) the exceptional divisor. If \(Y_{j-1} \) is a \(\mu_{j-1} \)-fold singular submanifold of the proper transform of \(D \) in \(X_{j-1} \), then we say that \(D \) has a type \(\mu = (\mu_j, Y_j, E_j \mid j \in \{0, 1, \ldots, m\}) \) singularity.

Now if \(Z \subset X \) is another divisor, such that

\[\pi_j^* \left(\cdots (\pi_2^*(\pi_1^*(Z) - \delta_0 E_0) - \delta_1 E_1) - \cdots \right) - \delta_{j-1} E_{j-1} \]

is an effective divisor for \(j = 1, 2, \ldots, m + 1 \), then we say that \(Z \) has a weak type \(\delta = (\delta_j, Y_j, E_j \mid j \in \{0, 1, \ldots, m\}) \) singularity.

We now state our results, which can be viewed as a generalization of Bertini’s theorem.

Theorem. Assume that

\[|L| = \{\lambda_0 Q_0 + \lambda_1 Q_1 + \cdots + \lambda_k Q_k \mid (\lambda_0, \cdots, \lambda_k) \in \mathbb{P}^k\} \]

is a linear system of divisors without fixed component on a smooth variety \(X \) with \(\dim X \geq 2 \), and that the generic element of \(|L| \) is irreducible. If a generic divisor \(D_\lambda \in |L| \) has a type \(\mu(\lambda) = (\mu_j, Y_j(\lambda), E_j(\lambda) \mid j \in \{0, 1, \ldots, m\}) \) singularity inside the base locus \(B \), then every base element \(Q_i \ (i = 0, 1, \cdots, k) \) of the linear system has a weak type \(\mu(\lambda) - 1 = (\mu_j - 1, Y_j(\lambda), E_j(\lambda) \mid j \in \{0, 1, \ldots, m\}) \) singularity. Furthermore, if \(Y_0(\lambda) = Y_0 \) does not move, then \(Q_i \) has multiplicity \(\mu_0 \) along \(Y_0 \).

As a special case of the above theorem, one can immediately recover the classical Bertini’s theorem we mentioned at the beginning of this paper.

If \(|L| \) is a linear system of divisors of dimension \(k \) on \(X \) with \(k \geq 1 \), and \(f \) is the rational map from \(X \) to \(\mathbb{P}^k \) associated to \(|L| \), then by Bertini’s theorem [FL], we know that the generic element of \(|L| \) is irreducible if \(\dim f(X) \geq 2 \). Moreover, \(|L| \) is composed with a pencil if \(\dim f(X) = 1 \).

The method we will use to prove the theorem is deformation of singularities as we did in [X1] and [X2].

Throughout this paper we work over the field of complex number \(\mathbb{C} \).

Finally, I am grateful to János Kollár and Henry Pinkham for many helpful conversations.

We now start the proof of our theorem.