ON CANONICAL FIBRATIONS OF ALGEBRAIC SURFACES

Xiaotao Sun

Let S be an algebraic surface of general type. If the canonical system $|K_S|$ of S is a pencil of genus g, we hope to find the largest $c(g)$ such that $K_S^2 \geq c(g)p_g + \text{constant}$. We have known that $c(3) \leq 6$. In this paper, we proved that $c(3) \geq 5.25$.

Introduction

Let S be a smooth projective surface of general type over \mathbb{C} and K_S a canonical divisor of S. ϕ_n denotes the map determined by linear system $|nK_S|$. ϕ_1 is called canonical map of S, and $\phi_n (n \geq 2)$ the pluricanonical map of S. Much has been known about the pluricanonical map of S. However, the situation of canonical map is completely different, the method used in the study of pluricanonical map is not valid again. As far as I know, A. Beauville is the first man to study ϕ_1 systematically, he studied ϕ_1 according to $\dim \phi_1(S) = 1$ or $\dim \phi_1(S) = 2$. The proof of his theorem rests heavily on Bogomolov-Miyaoka-Yau inequality. In this paper we are only interested in the case $\dim \phi_1(S) = 1$. By the Stein factorization of ϕ_1, we have $S \to B \to \phi_1(S)$, where B is a smooth curve of genus b, and the general fibre F of f is of genus g. Let $p_g = \dim H^0(S, K_S), q = \dim H^1(S, \mathcal{O}_S)$ and $\chi = \chi(\mathcal{O}_S) = p_g - q + 1$. Then, according to Beauville, f is a fibration and $2 \leq g \leq 5$ when $\chi(\mathcal{O}_S) \geq 21$, we call this fibration the canonical fibration of S. We have known that there exist surfaces with canonical fibrations of genus 2 and 3 such that p_g tends to infinity. Now two questions arise: (1) Does there exist any surface of general type with canonical fibration of genus 4 and 5. G. Xiao conjectured that there is no surface of general type with canonical fibration of genus 5 when p_g is large (see [6]). (2) When S has canonical fibration of genus g, find the largest $c(g)$ such that $K_S^2 \geq c(g)p_g + \text{Constant}$. G. Xiao proved $c(2) = 4$ (which was conjectured by M. Ried), and left the estimate of $c(3)$ as an open problem (see [6]). In this paper, we obtain some partial results about the two problems as the following.
Theorem 1. If \(|K_S|\) induces a hyperelliptic fibration of genus \(g\), then

\[K_S^2 \geq \begin{cases} \frac{2(g-1)}{3}(x + q) - 8(g - 1), & \text{if } b = 0, \\ 2(g-1)x, & \text{if } b = 1, \end{cases} \]

Corollary 1. If either \(b = 1\) or \(p_2 \geq 53 - 15q\), then \(S\) has no hyperelliptic canonical fibration of genus 5.

Theorem 2. Let \(f : S \to B\) be the canonical fibration with reduced fibres of genus 3, then

\[K_S^2 \geq \frac{5}{4}p_2 - \frac{71}{6}. \]

Throughout the paper, we adopt the notation in [2] and always assume the smooth projective surface \(S\) is of general type and minimal over \(\mathcal{C}\).

1. The hyperelliptic case

Let \(|K_S|\) be a pencil of genus \(g\) and \(p_2 > 2g - 2\), then \(\phi_1\) has no base point, i.e. \(f : S \to B\) is a fibration of genus \(g\). By Xiao's estimate of \(b\) and \(q\) (\(b = 0, q < 2\) or \(b = q = 1\)), we can write

\[K_S \equiv Z + f^*D_a, \quad a = p_2 + b - 1, \]

where \(Z\) is the fixed part of \(|K_S|\), \(D_a \in \text{Pic}(B)\) and \(a = \deg(D_a)\).

Let \(Z = H + V\) and \(H = \sum_{i=1}^{k} n_i C_i\), where \(V\) is the vertical part of \(Z\) (contained in some fibres of \(f\)) and \(C_i\) is the irreducible component of \(H\), which is the horizontal part of \(Z\).

We can assume \(n_1 \geq n_2 \geq \cdots \geq n_k\) and \(F\) the general fibre of \(f\). Now we consider the case that \(f\) is hyperelliptic fibration of genus \(g\), i.e. \(F\) is a hyperelliptic curve. We have an involution \(\sigma\) on \(S\) such that the following diagram is commutative.

\[
\begin{array}{ccc}
\tilde{S} & \xrightarrow{\pi} & P = \tilde{S}/\sigma \\
\varepsilon \downarrow & & q \downarrow \\
S & \xrightarrow{\sigma} & B
\end{array}
\]

where \(P\) is the ruled surface over \(B\), \(\varepsilon\) is the composition of some blowing-ups with the centers of isolated fixed points of \(\sigma\), \(\pi\) is the double cover induced by \(\sigma\).

If \(n_1 \geq g\), then \(C_1\) is a section of \(f\). Let \(P_F = C_1 \cap F\), it is easy to see that \(h^0(gP_F) = \dim R^0(F, gP_F) \geq 2\) by the Riemann-Roch theorem since \(K_F = (K_S + F)|_F \geq gP_F\). Thus \(P_F\) is the canonical ramification point of \(F\), which implies \(P_F\) is the fixed point of \(\sigma\).

Now we have proved that \(C_1\) is a component of the fixed locus of \(\sigma\) and \(C_1\) does not