Some loci in Teichmüller space for genus seven defined by vanishing thetanulls*

Robert D. M. Accola

Let $\theta[e](u)$ be a theta function for a Riemann surface W of genus seven. Suppose $\theta[e](u)$ vanishes at $u = 0$ for 4 half-integer theta characteristics $[\varepsilon_i]$, $i = 1, 2, 3, 4$ to orders 2, 2, 2, and 3 respectively and $(\varepsilon_1 + \varepsilon_2 + \varepsilon_3 + \varepsilon_4) = (0)$. Then W is hyperelliptic, elliptic-hyperelliptic or W lies in the closure of a locus in Teichmüller space of Riemann surfaces which admit plane models where the four half-canonical linear series corresponding to the theta-vanishings are clearly evident.

1. Introduction

Let W_p be a compact Riemann surface of genus p. Let T_p, H_p, $(E - H)_p$ stand for, respectively, Teichmüller space for genus p, the hyperelliptic locus in T_p, and the elliptic-hyperelliptic locus in T_p. Our primary interest is the case $p = 7$. Then H_7 has pure codimension 5 in T_7, and $(E - H)_7$ has pure codimension 6. In this paper we shall give local defining equations for H_7, $(E - H)_7$, and a third locus, N_7, in terms of the vanishing properties of the theta function.

The vanishing properties are as follows. Let a canonical homology basis be chosen for W_7, and so corresponding theta functions with half-integer theta characteristics, $\theta[e](u)$, are defined. Let $[\varepsilon_i]$, $i = 1, 2, 3, 4$, be theta characteristics so that (i) $\theta[e_i](u)$ vanishes at $u = 0$ to orders 2, 2, 2, and 3 for $i = 1, 2, 3, 4$, and (ii) $(\varepsilon_1 + \varepsilon_2 + \varepsilon_3 + \varepsilon_4) = (0)$.

By Riemann's vanishing theorem ([12, p. 459], and [13]), these vanishing properties are equivalent to the existence on W_7 of 4 complete half-canonical linear series, g^1_6, h^1_δ, k^1_δ, and \mathcal{L}_c^2 whose sum is bicanonical. Such a set of 4 half-canonical linear series will be called a quartet and \mathcal{L}_c^2 will be called the leader. We shall state our theorem in terms of the existence of a quartet.

By the known vanishing properties of theta functions for hyperelliptic and elliptic-hyperelliptic Riemann surfaces of genus 7 ([12, p. 459], [10, Ch. VII], and [3, p. 51]) many

* The author thanks Alan Landman for valuable discussions concerning the material in this paper. A.M.S. Mathematical Subject Classification 1991. Primary 14H45. Secondary 30F10. Key Words: Riemann surface; theta function; half-canonical linear series
quartets exist on such surfaces. The third locus, \(\mathcal{N}_7 \), will be the closure in \(T_7 \) of Riemann surfaces which have a distinctive plane model which will now be described.

Let \(A_1, A_2, A_3 \) and \(A_4 \) be the 4 points in \(\mathbb{P}^2(C) \), \((\pm 1, \pm 1, 1) \). Let \(P, Q \) and \(R \) be the points \((1, 0, 0), (0, 1, 0), \) and \((0, 0, 1) \), the 3 diagonal points of the quadrangle \(A_1A_2A_3A_4 \).

Let \(C_9 \) be a plane curve of degree 9 with singularities only at these 7 points, and each singularity is an ordinary singularity of multiplicity 3, or any other singularity of multiplicity 3 which contributes 3 to the \(\delta \)-invariant of \(C_9 \). \(C_9 \) has genus 7 and the dimension of such curves, \(C_9 \), in \(T_7 \) is 12. The quartet is as follows. The leader, \(\ell_4 \), is cut out by cubics passing through all 7 singular points. The other 3 linear series are cut out by lines passing through the 3 diagonal points \(P, Q, \) and \(R \). The closure in \(T_7 \) of Riemann surfaces admitting such models will be denoted \(\mathcal{N}_7 \). Models of the above type will be called \textit{general} in contradistinction to \textit{non-general} models now to be described.

Consider a general model as described in the preceding paragraph. Perform an elementary quadratic transformation with fundamental points \(A_2, A_3, \) and \(A_4 \). The transformed curve, \(C'_9 \), is again of degree 9 with an ordinary singularity of multiplicity 3 at \(A'_1 \) (the transform of \(A_1 \)) and with (what we shall call) a \((3, 6) \)-point at \(P', Q', \) and \(R' \) (the transforms of \(P, Q, \) and \(R \)).

Definition. A \((3, 6) \)-point is a singularity of multiplicity 3 where all branches have a common tangent (the \((3, 6) \)-tangent) which intersects the curve at least 6 times at the singularity. (A \((3, 6) \)-point will contribute at least 6 to the \(\delta \)-invariant.)

On \(C'_9 \) all 3 of the \((3 - 6) \)-tangents will pass through \(A'_1 \). The points \(P', Q', \) and \(R' \) are not collinear. \(\ell'_4 \) is cut out by cubics through all 4 singularities and tangent at \(P', Q', \) and \(R' \) to the \((3-6) \)-tangents. \(g'_6 \) will be cut out by conics through \(P', Q', \) and \(R' \) and tangent to the \((3-6) \)-tangent at \(P' \). Similarly for \(h'_6 \) and \(k'_6 \).

But for a plane curve like \(C'_9 \), there is no reason why the 3 points \(P', Q', \) and \(R' \) cannot be collinear. If they are, the corresponding \(W_7 \) will be said to admit a \textit{non-general} model. In this case \(\ell'_6 \) is cut out as before, but the other linear series are now cut out by lines passing through \(P', Q', \) and \(R' \).

We shall also see that in \(\mathcal{N}_7 \) there are \(W_7 \)'s which are 3-sheeted coverings of tori. Any 3-sheeted covering of a torus will be called \textit{elliptic-trigonal} and the locus of such surfaces in \(T_7 \) will be denoted \((E-T)_7 \). By the Riemann-Hurwitz formula, each component of \((E-T)_7 \) has dimension 12.

We now state the theorem.

Theorem. Suppose \(W_7 \), a Riemann surface of genus 7, admits 4 complete half-canonical linear series \(g'_6, h'_6, k'_6, \) and \(\ell'_6 \) whose sum is bicanonical. Then one of the following possibilities holds:

(i) \(W_7 \) is hyperelliptic
(ii) \(W_7 \) is elliptic-hyperelliptic
(iii) \(W_7 \) is in \(\mathcal{N}_7 \).