GLOBAL REGULARITY OF THE \(\bar{\partial} \)-NEUMANN PROBLEM
ON AN ANNULUS BETWEEN TWO PSEUDOCONVEX
MANIFOLDS WHICH SATISFY PROPERTY (P)

HONG RAE CHO

Received November 17, 1995;
in revised form April 30, 1996

Let \(X \) be a complex manifold of dimension \(n \geq 3 \). Let \(\Omega_1, \Omega_2 \) be two open pseudoconvex submanifolds with smooth boundary such that \(\Omega_1 \Subset \Omega_2 \Subset X \). Let \(\Omega = \Omega_2 \setminus \overline{\Omega}_1 \). Assume that \(\partial \Omega_1 \) and \(\partial \Omega_2 \) satisfy Catlin's condition (P). Then the compactness estimate for \((p, q) \)-forms with \(0 < q < n - 1 \) holds for the \(\bar{\partial} \)-Neumann problem on \(\Omega \). This result implies that given a \(\bar{\partial} \)-closed \((p, q) \)-form \(\alpha \) with \(0 < q < n - 1 \), which is \(C^\infty \) on \(\overline{\Omega} \) and which is cohomologous to zero on \(\Omega \), the canonical solution \(u \) of the equation \(\bar{\partial}u = \alpha \) is smooth on \(\overline{\Omega} \).

1. Introduction

Let \(X \) be a complex manifold of dimension \(n \). Let \(\Omega \Subset X \) be an open submanifold with smooth boundary. Let \(\alpha \) be a \(\bar{\partial} \)-closed \((p, q) \)-form, which is \(C^\infty \) on \(\overline{\Omega} \) and which is cohomologous to zero on \(\Omega \). The \(\bar{\partial} \)-Neumann problem is concerned with the existence and especially with the regularity of the solution \(u \) of the equation \(\bar{\partial}u = \alpha \), where \(u \) is orthogonal to the kernel of \(\partial \). This solution is called the canonical solution or Kohn's solution. By a theorem of Kohn and Nirenberg [8], it is known that the existence of a subelliptic estimate yields a positive answer to the question of local regularity. Catlin has proved that on a smoothly bounded pseudoconvex domain \(\Omega \) in \(\mathbb{C}^n \) a subelliptic estimate for the \(\bar{\partial} \)-Neumann problem holds in a neighborhood of \(p \in \partial\Omega \) iff \(\partial\Omega \) is of finite type at \(p \) [3]. For many applications, such as the boundary regularity of biholomorphic maps [1], it is sufficient to study the

This research was supported by Korea Research Foundation 1994
question of global regularity. Kohn has shown that when Ω is pseudoconvex, then there always is a smooth solution to $\bar{\partial} u = \alpha$ [9]. But in this result the solution u is not necessarily the canonical solution.

A compactness estimate is said to hold for the $\bar{\partial}$-Neumann problem on Ω if for every $\epsilon > 0$ there is a $C(\epsilon) > 0$ such that

$$
\|\Phi\|^2 \leq \epsilon Q(\Phi, \Phi) + C(\epsilon)\|\Phi\|^2_{L^1}
$$

for all $\Phi \in \text{Dom}(\bar{\partial}) \cap \text{Dom}(\bar{\partial}^*)$. Here $Q(\Phi, \Psi)$ refers to the form $(\bar{\partial}\Phi, \bar{\partial}\Psi) + (\bar{\partial}^*\Phi, \bar{\partial}^*\Psi)$, and $\|\cdot\|^2_{L^1}$ refers to the Sobolev norm of order 1 for forms on Ω.

We know that the property (1.1) is equivalent to the norm Q being compact.

We define

$$
\mathcal{H}^{p,q} = \{ \Phi \in \text{Dom}(\bar{\partial}) \cap \text{Dom}(\bar{\partial}^*) \mid \bar{\partial}\Phi = 0 \text{ and } \bar{\partial}^*\Phi = 0 \}
$$

Theorem 1.1 ([8]). Let $\Omega \subseteq X$ be an open submanifold with smooth boundary. Let m be a nonnegative integer and let $H^m(\Omega)$ be a Sobolev space of order m. Suppose that the compactness estimate (1.1) holds on Ω. Suppose further that the $\bar{\partial}$-closed (p,q)-form α is in $H^m(\Omega)$ and $\alpha \perp \mathcal{H}^{p,q}$, then there is a constant C_m so that the canonical solution u of $\bar{\partial} u = \alpha$ with $u \perp \text{Ker}(\bar{\partial})$ satisfies

$$
\|u\|^2_m \leq C_m(\|\alpha\|^2_m + \|u\|^2).
$$

Since $C^\infty(\overline{\Omega}) = \cap_{m=0}^\infty H^m(\Omega)$, it follows that if $\alpha \in C^\infty_{(p,q)}(\overline{\Omega})$, then $u \in C^\infty_{(p,q-1)}(\overline{\Omega})$.

Definition 1.2. The boundary of a domain Ω satisfies property (P) if for every positive number M there is a plurisubharmonic function $\lambda \in C^\infty(\overline{\Omega})$ with $0 \leq \lambda \leq 1$, such that for all $z \in \partial\Omega$,

$$
\sum_{j,k=1}^n \lambda_{jk}(z) t_j t_k \geq M |t|^2,
$$

where $\lambda_{jk}(z)$, $j, k = 1, \ldots, n$, is defined by $\partial \partial \lambda(z) = \sum_{j,k=1}^n \lambda_{jk}(z) \omega^j \wedge \overline{\omega}^k$ for an orthonormal basis $\omega^1, \ldots, \omega^n$ of $\Lambda^{1,0}$.

Remark 1.9. (1) Since the complex Hessian is preserved under biholomorphic mappings, the definition of property (P) does not depend on coordinate functions.

(2) Property (P) is known to hold for a large class of domains, including domains of finite type [3]. But even a domain with an infinitely flat spot, such as

$$
\Omega = \{ z \in \mathbb{C}^2 \mid |z_1|^2 + e^{-1/|z_1|^2} < \frac{1}{2} \}
$$

satisfies still property (P) [10].

In [2], Catlin showed that if Ω is a smoothly bounded pseudoconvex domain in \mathbb{C}^n such that $\partial \Omega$ satisfies property (P), then the compactness estimate holds for the $\bar{\partial}$-Neumann problem on Ω. In this paper, we consider the annulus $\Omega = \Omega_2 \setminus \overline{\Omega}_1$ between two pseudoconvex submanifolds Ω_1 and Ω_2 such that $\Omega_1 \subseteq \Omega_2$. We shall