ROTATIONAL HYPERSURFACES OF SPACE FORMS
WITH CONSTANT SCALAR CURVATURE

Maria Luiza Leite *

Let M be a complete rotational hypersurface of a space form with constant scalar curvature S. In this paper we classify these hypersurfaces in the cases of \mathbb{R}^n and \mathbb{H}^n, determine the admissible values of S in each of the three spaces and give a geometrical description of the hypersurfaces according to the values of S. In the case of \mathbb{S}^n we find examples of embedded hypersurfaces with constant $S \in (\frac{n-2}{n-1}, 1)$, which are not isometric to product of spheres.

The scalar curvature S of a riemannian manifold is an important geometric invariant, thus the interest in those manifolds with constant S and in particular, in the hypersurfaces of space forms.

One important result is the theorem of A. Ros [7] according to which the only embedded compact hypersurfaces of \mathbb{R}^n with constant S are round spheres. For the non-compact ones there is a theorem of Cheng-Yau [3] stating that the only complete examples with sectional curvatures $K \geq 0$ are $S^{k-1} \times \mathbb{R}^{n-k}$, $1 \leq k < n$.

In [4] and [5] Hsiang analysed rotational hypersurfaces of space forms with a symmetric function σ_j of the principal curvatures constant, which includes constant scalar curvature when $j = 2$. There he obtains a collection of complete

* research partially supported by CNPq-Brazil
hypersurfaces of \mathbb{R}^n and \mathbb{H}^n with $S > 0$ and of S^n with $S > 1$, but no classification theorem is presented.

In this paper we classify all complete rotational hypersurfaces of \mathbb{R}^n and \mathbb{H}^n with constant scalar curvature (Theorems 3.4 and 3.5). Partial results for S^n are presented in Theorem 3.6. We also prove that S is precisely greater than or equal to the space form curvature, except in the case of S^n where any value greater than $(n - 3)/(n - 1)$ is admissible. In particular we exhibit a collection of new complete hypersurfaces of \mathbb{H}^n with S ranging in $[-1,0]$, of \mathbb{R}^n with $S = 0$ and of S^n with S in the interval $(\frac{n-3}{n-1},1)$. Surprising examples of embedded hypersurfaces of S^n with $S < 1$ are presented. We point out that Theorem 3.4 has been announced earlier (see [2]).

Our results suggest interesting problems in Global Differential Geometry. We state below three of these: the first one carries a flavor of Hilbert theorem for surfaces and the second a flavor of Bernstein theorem for minimal surfaces.
- Is there a complete hypersurface of \mathbb{R}^n with constant $S < 0$?
- Is there a nonflat complete graph in \mathbb{R}^n with constant $S = 0$?
- Are there embedded hypersurfaces of S^n with constant $S \geq 1$ other than product of spheres?

The author wishes to acknowledge the hospitality of both Université Paris 7 and École Polytechnique while preparing this work.

1. UNIFIED EXPRESSION FOR THE SCALAR CURVATURE.

We denote by N_c the simply connected n-dimensional space form of constant curvature $c = 0, 1$ or -1. We will take as models for N_c the euclidean space \mathbb{R}^n, the unitary round sphere S^n and the hyperbolic upper space $\mathbb{H}^n = \{y \in \mathbb{R}^n : y_n > 0\}$.

Let M be a rotational hypersurface of N_c, that is, invariant by the orthogonal group $O(n - 1)$ considered as a subgroup of isometries of the ambient space. To study the geometry of M, we generalize the method used by Spivak ([8], page 173) to compute the intrinsic Gaussian curvature of a rotational surface of \mathbb{H}^3.

There, an element of $O(2)$ fixes all points of a given geodesic γ, which is the axis of revolution, and rotates the initial tangent vector of a geodesic ray starting orthogonally from γ. The orbit of a point p, at a distance $r > 0$ from γ, under the