THE FINITENESS OF A BASE OF IDENTITIES
FOR FIVE-ELEMENT MONOIDS

A.V. Tishchenko
Communicated by L.N. Shevrin

P. Perkins [6] has given an example of a monoid, i.e. a semigroup with identity, of order six whose identities are not finitely based. He also showed that any semigroup of order three had finitely based identities. The question whether a semigroup of order four and five has a finite base of identities was raised in [8]. A.D. Bolbot [2] announced that identities of any semigroup of order four were finitely based. One can find a proof in [3]. C.C. Edmunds [4] has proved that identities of any monoid with zero of order five are finitely based.

The main result of the present paper is the following theorem announced in [9].

THEOREM. Any monoid of order five has a finite base of identities.

In order to prove this theorem we shall use the following well known results: 1) identities of a commutative semigroup have a finite base [6]; 2) identities of a band are finitely based [1]; 3) a list of all semigroups of order less than five [5].

Below we shall not distinguish semigroups which are isomorphic or antiisomorphic.

The following well known simple fact is useful for us.

LEMA 1. A finite (even periodic) monoid S can be
represented as a union of a group G of all (left) invertible elements in S and the unique maximal ideal T in S such that $G \cap T = \emptyset$. Hence, if T is not empty then S is a semilattice of the ideal T and the group G.

In order to obtain multiplication tables of all five-element monoids we shall vary the order of the group G in lemma 1 from 1 to 5.

1. PRELIMINARIES

Let $X = \{x, x_1, x_2, \ldots, y, y_1, y_2, \ldots, z, z_1, z_2, \ldots\}$ be a countable alphabet. For a word A in alphabet X let $\ell(A)$ denote the length of A, $\ell_x(A)$ denote the number of occurrences of variable x in A, $c(A)$ the set of variables which occur at least once in A, $c_k(A)$ the set of all variables having exactly k occurrences in A. If A and B coincide graphically then we shall write $A \equiv B$.

An identity $A = B$ is called homogeneous if $c(A) = c(B)$. A system of identities β is called closed under deleting (see [6]) if every identity of β is homogeneous and every identity obtained from $A = B$ by deleting all occurrences of any variable x again belongs β. It is easy to see that a set of all identities of a semigroup with identity element which is not a group is closed under deleting.

A semigroup S is called an ordinal sum of T and G if S is a semilattice of T and G and $tg = gt = t$ for each $t \in T$ and $g \in G$. We also say that S is an ordinal extension of T.

In order to find a base of identities of some semigroups we need two following obvious lemmas.

LEMMA 2. If a semigroup S contains an ideal T and a subsemigroup G such that $T \cap G = \emptyset$ then each identity of S is homogeneous.

LEMMA 3. If S contains a left-zero subsemigroup then for each identity $A = B$ of S the words A and B