BANDS ON TREES

by

Haskell Cohen
Communicated by D. R. Brown

1. INTRODUCTION

Any metric tree with a finite number of end points can serve as the underlying space for a topological band (= idempotent semigroup) with zero. One merely takes the cartesian product of a finite band with at least as many points as the number of end points together with a "min" thread; then, divides out the appropriate congruence. Indeed, with a little care for the topological considerations, a similar process will work for trees with an infinite number of end points and even for many generalized trees. See [2].

The purpose here, however, is to consider the inverse question; namely, must every band with zero on a finite tree be of this sort? More precisely: Given a band with zero on a finite tree, S, does there exist a finite band, D, such that S is the continuous homomorphic image of D × I (where I is the unit interval with "min" multiplication)?

The answer is affirmative if S has an identity element and negative if no identity is required. An example is given to illustrate this.

It is a pleasure to record here my gratitude for helpful comments of Professors J. M. Howie and R. J. Koch.

2. BANDS WITH IDENTITY

Throughout this section S will stand for a topological band with zero and identity whose underlying space is a tree with a finite
number of end points. We list here several well-known properties of
trees and semigroups which we need in the sequel.

The identity element which we designate by the letter \(u \) must
be an end point. See e.g. [3]. The zero element, \(O \), may be an end
point, a branch point, or neither. Any two distinct points \(p \), and
\(q \) have a unique arc connecting them. This arc is designated as
\([p,q]\). We say that \(q < p \) if \(q \neq p \) and \(q \in [p,O] \).

Lemma 1. The arc \([p,O]\) is a min thread.

Proof. Since multiplication is continuous and \(p \) is idempotent,
\(p \cdot [p,O] \) is a connected set containing \(p \) and \(O \) and, therefore
\([p,O]\). Hence every point in \([p,O]\) can be written as \(px \) for some
\(x \). So \(p \) is a left identity for \([p,O]\), and since a similar argu-
ments shows \(p \) is also a right identity, \(p \) is an identity for
\([p,O]\). This actually proves the lemma for we have shown that any
point is an identity for anything less than it.

Lemma 2. If \(x \in [u,O] \), then \(xp = px \) for all \(p \in S \).

Proof. We show first that \(p \cdot [u,O] = [p,O] = [u,O]p \). Since
\(p[u,O] \) contains \(pu = p \) and \(pO = 0 \) it must contain \([p,O]\). If
\(y = pt \in p[u,O] \), then the possibilities are i) \(y \in [p,O] \), ii)
\(p \in [y,O] \), iii) \(0 \in [p,y] \) or iv) \(\exists b \), a branch point such that
\(b \in [p,O] \cap [y,O] \).

If \(p \in [y,O] \), by Lemma 1, \(p = py = p(pt) = pt = y \).
If \(0 \in [p,y] \), \(\exists s > t \) such that \(ps = 0 \) and \(y = pt = pst =
Ot = 0 \).
If iv), \(\exists r \) and \(s \) such that \(r < t < s \) and \(b = pr = ps \).
Therefore \(y = pt = p(st) = (ps)t = (pr)t = p(rt) = pr =
b \in [p,O] \). So in all cases \(y \in [p,O] \) and \(p \cdot [u,O] = [p,O] \),
and a similar argument can be made for \(p \) on the right. Now
we are able to say that \(px = (px)p = p(xp) = xp \).

Remark: This lemma may easily be strengthened to say that if
\(x \in [e,O] \), \(y \in [f,O] \) and \(fe = ef \), then \(xy = yx \), but we will need
only the weaker form.