THE HERMITE INTERPOLATION

B. DELLA VECCHIA (1), G. MASTROIANNI (2)

ABSTRACT - The authors obtain new results on Hermite interpolation based on Jacobi and generalized Jacobi zeros in C^1 space and prove error estimates in uniform and weighted L^p norms. The paper gives also the state of art on the topic.

1. Introduction

Let $Y = \{y_{n,k} = y_k, k = 1, ..., n, n \in \mathbb{N}\} \subseteq [-1, 1]$ be an infinite matrix of nodes and for every continuous function f on $[-1, 1]$ ($f \in C^0 = C^0([-1, 1])$) denote by $L_n(f)$ the corresponding Lagrange polynomial of degree at most $n - 1$ interpolating the function f at the points $y_k, k = 1, ..., n$.

The operator L_n maps C^0 into itself and denoting by $\|f\| = \|f\|_{\infty} = \max_{|x| \leq 1} |f(x)|$ the usual uniform norm, the norm of the operator $L_n(f)$ is defined by

$$\|L_n\|_{\infty} = \sup_{\|f\| = 1} \|L_n(f)\|.$$

Usually $\|L_n\|_{\infty}$ is called the n-th Lebesgue constant of Lagrange interpolation.

Now let $\{p_n^{\alpha,\beta}\}$ be the sequence of orthonormal polynomials corresponding to the Jacobi weight

(1) Dipartimento di Matematica, Istituto G. Castelnuovo, Università di Roma La Sapienza, P/le A. Moro 2, 00185 Roma, Italia.

(2) Dipartimento di Matematica, Università della Basilicata, Via N. Sauro 85, 85100 Potenza, Italia e Istituto per Applicazioni della Matematica, C.N.R., Via P. Castellino 111, 80131 Napoli, Italia.
and denote by \(x_{k,n} = x_k, k = 1, ..., n \), the zeros of \(p_n^\alpha \beta \) in natural order.

It is well-known that, if the Jacobi parameters \(\alpha, \beta \) vary in a suitable range (namely \(\alpha, \beta \leq - \frac{1}{2} \)), then the order of Lebesgue constants of the Lagrange interpolation process based at the zeros \(x_k, k = 1, ..., n \), of \(p_n^\alpha \beta \) is optimal, i.e.

\[
\|L_n\|_\infty \leq C \log n,
\]

with \(C \) a constant independent of \(n \).

Now consider the case of Hermite interpolation.

Let \(f \) be a differentiable function on \([-1, 1]\) (\(f \in C^1 = C^1([-1, 1]) \)) and denote by \(H_{2n}(f) \) the corresponding Hermite interpolation polynomial of degree at most \(2n - 1 \) interpolating the given function \(f \) and its derivative \(f' \) at the zeros \(x_k, k = 1, ..., n \), of \(p_n^\alpha \beta \), i.e.

\[
H_{2n}(f; x) = \sum_{k=1}^{n} l_k^0(x) \, v_k(x) \, f(x_k) + \sum_{k=1}^{n} l_k^1(x) \, (x - x_k) \, f'(x_k),
\]

with \(l_k(x) \) the \(k \)-th fundamental Lagrange polynomial,

\[
v_k(x) = 1 + \frac{\lambda_n'(v^\alpha \beta, x)}{\lambda_n(v^\alpha \beta)} (x - x_k),
\]

\(\lambda_n(v^\alpha \beta, x) \) the \(n \)-th Christoffel function, \(\lambda_{n,k}(v^\alpha \beta, x_k) = \lambda_n(v^\alpha \beta, x_k), k = 1, ..., n \), and \(\lambda_{n,k}'(v^\alpha \beta, x_k) = \lambda_n'(v^\alpha \beta, x_k), k = 1, ..., n \).

Obviously \(H_{2n} \) is an operator from \(C^1 \) to \(C^1 \), i.e. \(H_{2n} : C^1([-1, 1]) \to C^1([-1, 1]) \) and if in \(C^1 \) we define as usually the norm

\[
\|f\|_{\infty,1} = \max(\|f\|, \|f'\|),
\]

then the norm of the operator \(H_{2n} \) is

\[
\|H_{2n}\|_{\infty,1} = \sup_{\|f\|_{\infty,1} = 1} \|H_{2n}(f)\|_{\infty,1}.
\]

On the other hand it is easy to get the following classical estimate

\[
\|f - H_{2n}(f)\|_{\infty,1} \leq \text{const} (1 + \|H_{2n}\|_{\infty,1}) E_{2n-2}(f'),
\]