EXPANDING GRAPHS CONTAIN ALL SMALL TREES

J. FRIEDMAN and N. PIPPENGER

Received 2 May 1986

The assertion of the title is formulated and proved. The result is then used to construct graphs with a linear number of edges that, even after the deletion of almost all of their edges or almost all of their vertices, continue to contain all small trees.

1. Introduction

If H is an undirected graph, $V(H)$ will denote its set of vertices and $E(H)$ will denote its set of edges. If $X \subseteq V(H)$, $\Gamma_H(X)$ will denote the set of neighbors in H of vertices in X. If X is a set, $|X|$ will denote its cardinality.

The following theorem, which is implicit in a result of Pósa [5], has been given an elegant proof by Lovász ([3], Ch. 10. Problem 20).

Theorem 0. If H is a non-empty graph such that, for each $X \subseteq V(H)$ with $|X| \leq n$,

$$|\Gamma_H(X) \setminus X| \geq 2|X| - 1,$$

then H contains a path with $3n - 2$ vertices.

Using Theorem 0, Beck [2] proved an upper bound of the form $O(n)$ for the minimum possible number of edges in graphs that, even after the deletion of half their edges, continue to contain a path with n vertices; Alon and Chung [1] have given an explicit construction for such graphs.

The main result of this paper is the following theorem.

Theorem 1. If H is a non-empty graph such that, for every $X \subseteq V(H)$ with $|X| \leq 2n - 2$,

$$|\Gamma_H(X)| \geq (d + 1)|X|,$$

then H contains every tree with n vertices and maximum degree at most d.

Since a path with n vertices is the unique tree with n vertices and maximum degree 2, Theorem 1 generalizes the essence of Theorem 0 from paths to trees. Using Theorem 1, the arguments of Beck [2] and Alon and Chung [1], and a recent result of Lubotzky, Phillips and Sarnak [4], we prove the following theorem.

AMS subject classification (1980): 05 C 35; 05 C 05
Theorem 2. Let $\delta > 0$ and d be fixed. For every n there is a graph F with $O(n)$ edges that, even after deletion of all but $\delta |E(F)|$ edges, continues to contain every tree with n vertices and maximum degree at most d.

For $\delta = 1/2$, Beck [2] proved an upper bound, without an explicit construction, of the form $O(n(\log n)^2)$. We shall also prove the following theorem.

Theorem 3. Let $\varepsilon > 0$ and d be fixed. For every n there is a graph F with $O(n)$ edges that, even after deletion of all but $\varepsilon |V(F)|$ vertices, continues to contain every tree with n vertices and maximum degree at most d.

2. Proof of Theorem 1

If T is a tree and H is a graph, a map $f: V(T) \rightarrow V(H)$ will be called an embedding of T in H if it is injective and $f(v)$ and $f(w)$ are adjacent in H whenever v and w are adjacent in T. A tree T will be called small if it has at most n vertices and maximum degree at most d. (The parameters n and d will remain fixed throughout this proof.) A graph H will be called expanding if, for every $X \subseteq V(H)$ with $|X| \leq 2n-2$,

$$|\Gamma_H(X)| \geq (d+1)|X|.$$

Our goal is to show that if T is small and H is non-empty and expanding, then there is an embedding of T in H. To achieve this we shall define a class of "good" embeddings. We shall then show that this class has the following two properties.

Property 1. If T consists of a single vertex and H is a non-empty expanding graph, then there is a good embedding of T in H.

Property 2. If T is a small tree and S is a subtree of T obtained by deleting a leaf and the edge incident with it, then any good embedding of S in an expanding graph H can be extended to a good embedding of T in H.

When this has been done, it will follow by induction on $|T|$ that, if T is a small tree and H is a non-empty expanding graph, then there is a good embedding of T in H. If $|V(T)| = 1$, this follows from Property 1. If $|V(T)| \geq 2$, let S be any tree obtained from T by deleting a leaf and the edge incident with it. By inductive hypothesis, there is a good embedding of S in H, and by Property 2, this can be extended to a good embedding of T in H. This completes the induction and the proof of Theorem 1.

To define good embeddings, we shall need some auxiliary definitions. Let f be an embedding of a tree T in a graph H. If $X \subseteq V(H)$, we shall define the assets $A_f(X)$ of X under f to be $|\Gamma_H(X) \setminus f(V(T))|$. If $x \in V(H)$, we shall let $J_f(x)$ denote the degree of $f^{-1}(x)$ in T if $x \notin f(T)$, and 0 otherwise. We shall let $B_f(x)$ denote $d - J_f(x)$. If $X \subseteq V(H)$, we shall define the liabilities $B_f(X)$ of X under f to be $\sum_{x \in X} B_f(x)$, and the balance $C_f(X)$ of X under f to be $A_f(X) - B_f(X)$. A set $X \subseteq V(H)$ will be called solvent under f if $C_f(X) \geq 0$, critical under f if $C_f(X) = 0$, and bankrupt under f if $C_f(X) < 0$. Finally, we arrive at the key definition. An embedding f of a tree T in a graph H is good if every $X \subseteq V(H)$ with $|X| \leq 2n-2$ is solvent. It remains to prove Properties 1 and 2.