Let V_{fin} and E_{fin}, resp. denote the classes of graphs G with the property that no matter how we label the vertices (edges, resp.) of G by members of a linearly ordered set, there will exist paths of arbitrary finite lengths with monotonically increasing labels. The classes V_{inf} and E_{inf} are defined similarly by requiring the existence of an infinite path with increasing labels. We prove $E_{\text{inf}} \subseteq V_{\text{inf}} \subseteq V_{\text{fin}} \subseteq E_{\text{fin}}$. Finally we consider labellings by positive integers and characterize the class corresponding to V_{fin}.

1. Introduction

Let \mathcal{D} be a digraph of finite chromatic number k. In [2] Gallai proved that \mathcal{D} contains an oriented path of length $k-1$. Denote by \mathcal{K}_{fin} the class of graphs $\mathcal{G} = (V(\mathcal{G}), E(\mathcal{G}))$ with the following property: For every linearly ordered set \mathcal{L} and for every injective mapping $f : V(\mathcal{G}) \to \mathcal{L}$ there exists an arbitrarily long finite simple path $\{x_1, x_2\}, \ldots, \{x_{n-1}, x_n\}$ such that $\{x_i, x_{i+1}\} \in E(\mathcal{G})$ and $f(x_i) < f(x_{i+1})$ for all i and n, $1 \leq i \leq n-1$. It follows easily from Gallai's theorem that $\mathcal{G} \in \mathcal{K}_{\text{fin}}$ iff $\mathcal{G} = \mathcal{G}$.

In [3] and [5] edge weighted graphs were investigated. It was proved in [3], [5] that any graph \mathcal{G} with minimum degree $\geq p$ has the property that for every injection $g : E(\mathcal{G}) \to \mathcal{L}$ (\mathcal{L} is a linearly ordered set) there is a simple path $\{x_1, x_2\}, \ldots, \{x_{r-1}, x_r\}$ where $r = \left\lfloor \frac{1}{2} + \sqrt{\frac{1}{4} + p} \right\rfloor$, such that $g(\{x_1, x_2\}) \leq g(\{x_2, x_3\}) \leq \ldots \leq \ldots \leq g(\{x_{r-1}, x_r\})$.

Using these facts one can show that the class \mathcal{K}_{fin} is a proper subclass of the class \mathcal{K}_{fin} of all graphs which contain arbitrarily long monotone paths with respect to any edge ordering. Indeed, if $\mathcal{G} \in \mathcal{K}_{\text{fin}}$ then $\mathcal{G} = \mathcal{G}$ and, according to a theorem of Erdős—de Bruijn [1], \mathcal{G} contains finite subgraphs of arbitrarily large chromatic number and thus with large degrees. To show $\mathcal{K}_{\text{fin}} \neq \mathcal{K}_{\text{fin}}$ consider bipartite graphs with large degrees. We show here that the above observation cannot be extended to graphs containing infinite monotone paths: The class \mathcal{K}_{fin} of all graphs containing an
infinite monotone path for any ordering of edges is a proper subclass of the class \mathcal{V}_{fin} of all graphs containing an infinite path for any valuation of vertices.

Thus

$$\mathcal{E}_{\text{inf}} \subseteq \mathcal{V}_{\text{inf}} \subseteq \mathcal{V}_{\text{fin}} \subseteq \mathcal{E}_{\text{fin}}.$$

In the last section we investigate those countable graphs G which contain an infinite monotone path for any ordering of vertices by positive integers. We show that the obvious sufficient condition—there exists a subgraph $H \subseteq G$ such that all degrees of H are infinite—is also necessary for the existence of an infinite monotone path for every such ordering.

2. Basic notions

The graphs considered here are simple, undirected and without loops. Let \mathcal{G} be a graph. Then $V(\mathcal{G})$ and $E(\mathcal{G})$ denote the vertex and edge sets of \mathcal{G}, respectively. A mapping $\varphi: V(\mathcal{G}) \rightarrow V(\mathcal{G}')$ is said to be a homomorphism from a graph \mathcal{G} to a graph \mathcal{G}' if $\{x, y\} \in E(\mathcal{G})$ implies $\{\varphi(x), \varphi(y)\} \in E(\mathcal{G}')$. By a path of length k (infinite path) we understand a sequence $(e_1, e_2, ..., e_k)$ (infinite sequence $(e_1, e_2, ...)$) of distinct edges such that e_i and e_j have a common vertex iff $|i - j| \leq 1$. If convenient we identify a path with its set of vertices.

By a digraph \mathcal{D} we understand a pair (V, A) where $V = V(\mathcal{D})$ is the set of vertices and $A = A(\mathcal{D})$ is the set of arcs i.e. ordered pairs of distinct vertices. A digraph $\mathcal{D} = (V(\mathcal{D}), A(\mathcal{D}))$ is called an orientation of a graph $\mathcal{G} = (V(\mathcal{G}), E(\mathcal{G}))$ if $V(\mathcal{D}) = V(\mathcal{G})$, $A(\mathcal{D}) \cup A(\mathcal{D})^{-1} = E(\mathcal{G})$ and $A(\mathcal{D}) \cap A^{-1}(\mathcal{D}) = \emptyset$. By a path of length k (infinite path) in \mathcal{D} we understand a sequence $(a_1, a_2, ..., a_k)$ (an infinite sequence $(a_1, a_2, ...)$) of distinct arcs of \mathcal{G} such that there exist not necessarily distinct vertices $x_1, x_2, ..., x_{k+1}$ $(x_1, x_2, ...)$ such that either $a_i = (x_i, x_{i+1})$ for all $i = 1, 2, ..., k$ $(i = 1, 2, ...)$ or $a_i = (x_{i+1}, x_i)$ for all $i = 1, 2, ..., k$ $(i = 1, 2, ...)$.

Note that paths in digraphs considered above need not be simple. An increasing path is a sequence of arcs $(a_1, a_2) \in A(\mathcal{G})$ where $x_i \neq x_{i+1}$ iff $i \neq j$. By a cycle in a digraph we understand a sequence of arcs $(a_1, a_2), (a_2, a_3), ..., (a_j, a_k+1), (a_k+1, a_1)$. Let us recall the definition of the classes $\mathcal{E}_{\text{fin}}, \mathcal{V}_{\text{inf}}, \mathcal{V}_{\text{fin}}, \mathcal{E}_{\text{inf}}$ given in introduction. We say that a graph belongs to \mathcal{V}_{inf} (resp. \mathcal{E}_{inf}) if for every injective mapping $f: V(\mathcal{G}) \rightarrow L$ (resp. $g: E(\mathcal{G}) \rightarrow L$), where L is an arbitrary linearly ordered set, there exists an infinite path $x_1, x_2, ...$ in \mathcal{G} such that either $f(x_1) < f(x_2) < ...$ or $f(x_1) > f(x_2) > ...$ (resp. either $g(\{x_1, x_2\}) < g(\{x_2, x_3\}) < ...$ or $g(\{x_1, x_2\}) > g(\{x_2, x_3\}) > ...$).

We say that \mathcal{G} belongs to \mathcal{V}_{inf} (resp. \mathcal{E}_{inf}) if for every f (resp. g as above there exist arbitrarily long finite paths $x_1, x_2, ..., x_n$ in \mathcal{G} such that $f(x_1) < f(x_2) < ... < f(x_n)$, (resp. $g(\{x_1, x_2\}) < g(\{x_2, x_3\}) < ... < g(\{x_{k-1}, x_k\})$). Such paths we call f-monotone and g-monotone respectively.

Remark. One can easily see that the following two statements are equivalent:

1) $\mathcal{G} \in \mathcal{V}_{\text{fin}}$,
2) for every mapping $f: V(\mathcal{G}) \rightarrow L$ where L is an arbitrary linearly ordered set and for every n there exists a path $x_1, x_2, ..., x_n$ in \mathcal{G} such that $f(x_1) \equiv f(x_2) \equiv ... \equiv f(x_n)$.

The analogous statements hold for the classes $\mathcal{E}_{\text{inf}}, \mathcal{V}_{\text{inf}}$, and \mathcal{E}_{inf} as well.