On the Representation Theory of Möbius Groups in \mathbb{R}^n

Fang Ainong (方爱农)

Department of Mathematics, Hunan University, Changsha, China

Received Sept. 6, 1989

Abstract. We will solve several fundamental problems of Möbius groups $M(\mathbb{R}^n)$ which have been matters of interest such as the conjugate classification, the establishment of a standard form without finding the fixed points and a simple discrimination method.

Let $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be a Clifford matrix of dimension $n, c \neq 0$. We give a complete conjugate classification and prove the following necessary and sufficient conditions: g is f.p.f. (fixed points free) iff $g \sim \begin{bmatrix} \alpha & \beta \\ c & \alpha' \end{bmatrix}, |\alpha| < 1$ and $|E - \alpha E^1|
eq 0; g$ is elliptic iff $g \sim \begin{bmatrix} \alpha & \beta \\ c & \alpha' \end{bmatrix}, |\alpha| < 1$ and $|E - \alpha E^1| = 0; g$ is parabolic iff $g \sim \begin{bmatrix} \alpha & 0 \\ c & \alpha' \end{bmatrix}, |\alpha| = 1; g$ is loxodromic iff $g \sim \begin{bmatrix} \alpha & \beta \\ c & \alpha' \end{bmatrix}, |\alpha| > 1$ or rank $(E - \alpha E^1) \neq $ rank$(E - \alpha E^1, \alpha c^{-1} + c^{-1}d)$, where α is represented by the solutions of certain linear algebraic equations and satisfies

$$|c^{-1} \alpha'| = |(E - \alpha E^1)^{-1} (\alpha c^{-1} + c^{-1}d)|.$$

§1. Introduction

1. Let $M(\mathbb{R}^n)$ be orientation-preserving Möbius group in \mathbb{R}^n. N. J. Wielenberg$^{[1]}$ classified elements in $M(\mathbb{R}^n)$ in terms of their fixed points into parabolic, elliptic and loxodromic in 1977. S. Agard$^{[2]}$ also classified elements in $M(\mathbb{R}^n)$ into these three classes by Poincaré extension in \mathbb{R}^{n+1} in 1983. This classification is complete. We will give a refinement of these classifications.

K. Th. Vahlen established a Clifford matrix representation of the elements of $M(\mathbb{R}^n)$ in 1902, but his paper had been forgotten until revived by H. Mass in 1949, except for an

* Project supported by the National Natural Science Foundation of China and by U.S. Natural Science Foundation DMS 87–02356.
unfavorable mention in an encyclopedia article by E. Cartan. Since 1984, L. Ahlfors has expounded Vahlen's theorem again and again, emphasized its importance and gave a sketch accompanied with a very high appraisal. In 1985, he defined hyperbolic, elliptic and parabolic transformations by the conjugate class and gave their identifications; he pointed out that his definition for ellipticity is ambiguous. But he didn't give a complete conjugate classification and a standard form. Recently, F. W. Gehring established a complete classification of the discrete convergence groups, but he didn't give a complete classification of the convergence groups, while \(M(R^n) \) itself is just a convergence group.

2. Since 1986, we begin the study of fixed points and classifications of elements in \(M(R^n) \). In 1987, Zhou Zhan found an example without fixed points in \(M(R^n) \) and complemented Ahlfors' classifications, but he didn't go further. In 1988, Liu Chun Lin established a necessary and sufficient condition of the elements of \(M(R^3) \) without fixed points by quaternions and gave a complete conjugate classification with identifications. When \(n \geq 4 \), his method can not be used for \(M(R^n) \). In 1989, Wang Xian Tao established a complete classification of f.p.f., loxodromic, parabolic and elliptic elements by their fixed points in \(M(R^n) \) and identifications by the Descartes matrix representation formula. We established the relations between Clifford matrices and Descartes matrix representation formulas, gave a detailed proof of the Vahlen's theorem. We studied the invariant balls of elements and the more careful classifications of the loxodromic and parabolic elements in \(M(R^n) \), proved that the loxodromic elements in \(M(R^{2k+1}) \) certainly have an invariant ball, expounded the geometric meaning of Ahlfors' hyperbolic elements, introduced uniformly hyperbolic and parabolic elements and gave their identifications. We found the ranges of \(\text{Re}(\alpha + \alpha^*) \) for each class of \(M(R^n) \).

In this paper, we study the representation theory of \(M(R^n) \) by the Clifford matrix. We establish a necessary and sufficient condition for elements without fixed points, a complete conjugate classification, their identifications and conjugate standard form through solving a linear algebraic equation system without finding the fixed points.

3. Throughout this paper, we adopt the same notations as in [5]. Let \(M_n \) be a Clifford matrix group of dimension \(n \), \(A(z) \) (or \(A \)) be an orthogonal matrix in the formula \(c^*x_c^{-1} = Ax \) with \(|A| = 1 \), \(E^1 = \begin{bmatrix} -1 & 0 \\ 0 & E_{n-1}\end{bmatrix} \), \(E_{n-1} \) be an \((n-1) \times (n-1) \) identity matrix, \(x_\pm = x \pm x_n \epsilon_n \) with \(x \in R^n \) and \(\infty > x_n > 0 \), \(H^n = \{ x : x = x_0 + x_1 \epsilon_1 + \cdots + x_{n-1} \epsilon_{n-1} \in R^n, x_{n-1} > 0 \} \) and \(\mathcal{G}(x) \) be Poincaré extension in \(R^{n+1} \) of \(\mathcal{G}(x) \) in \(M(R^n) \). For more advanced materials on Clifford algebra, see [3-5], [10].

Because we concern ourselves mainly with the conjugate invariant properties of \(M(R^n) \) and its elements, thus without loss of generality, throughout this paper we put \(\epsilon \neq 0 \) if we do not state otherwise.