Randomly n-Cyclic Digraphs

Gary Chartrand1*, Ortrud R. Oellermann1** and Sergio Ruiz2

1 Department of Mathematics, Western Michigan University, Kalamazoo, MI 49008, USA
2 Instituto de Mathemáticas, Universidad Católica de Valparaíso, Valparaíso, Chile

Abstract. A digraph D is randomly n-cyclic ($n \geq 3$) if for each vertex v of D, every (directed) path with initial vertex v and having length at most $n - 1$ can be extended to a $v - v$ (directed) cycle of length n. Several results related to and examples of randomly n-cyclic digraphs are presented. Also, all randomly n-cyclic digraphs for $n = 3, 4, 5$ are determined.

In 1969 Chartrand, Kronk and Lick [2] defined a digraph D to be randomly hamiltonian if for each vertex v of D, every (directed) path with initial vertex v can be extended to a (directed) hamiltonian $v - v$ cycle. (See [1] or [4] for basic graph theory terminology.) The randomly hamiltonian digraphs were characterized in [2].

In this article the concept of randomly hamiltonian digraphs is generalized. For $n \geq 3$, a digraph D is defined to be randomly n-cyclic if for each vertex v of D, every path with initial vertex v and having length at most $n - 1$ can be extended to a $v - v$ cycle of length n. Thus a digraph D of order $p \geq 3$ is randomly hamiltonian if and only if D is randomly p-cyclic.

For a fixed integer $n \geq 3$, there are numerous examples of randomly n-cyclic digraphs. The complete symmetric digraphs K^*_{p} ($p \geq n$), the (directed) cycle Cs and symmetric cycle Cs^* are all randomly n-cyclic. The digraphs D_n ($n = 3, 4, 5$) of Fig. 1 are randomly n-cyclic.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{randomly_n-cyclic_digraphs.png}
\caption{Randomly n-Cyclic Digraphs}
\end{figure}

* Research supported by a Western Michigan University faculty research fellowship.
** Research supported in part by a College of Arts and Sciences and Graduate College research assistantship from Western Michigan University.
In order to present another class of randomly n-cyclic digraphs, we define a digraph D to be cyclically complete k-partite ($k \geq 2$) if the vertex set $V(D)$ of D can be partitioned into subsets V_1, V_2, \ldots, V_k such that (u, v) is an arc of D if and only if $u \in V_i$ and $v \in V_j$, for some i and j with $j - i \equiv 1 \pmod{k}$. If $|V_i| = p_i$ ($1 \leq i \leq k$), then this digraph D is denoted by $D(p_1, p_2, \ldots, p_k)$. Note that the digraph D_4 of Figure 1 is the cyclically complete 2-partite digraph $D(2, 2)$, while D_5 is the cyclically complete 5-partite digraph $D(1, 1, 1, 1, 1)$.

It is not difficult to see that if $n \geq 3$ and $k \geq 2$ are integers such that $k|n$, then for arbitrary integers p_1, p_2, \ldots, p_k with $p_i \geq n/k$ for all i ($1 \leq i \leq k$), then the digraph $D(p_1, p_2, \ldots, p_k)$ is randomly n-cyclic. Consequently, the digraph $D(2, 2, 3)$ of Figure 2 is randomly 6-cyclic.

Although we have already seen randomly n-cyclic digraphs that are not cyclically complete k-partite digraphs, there is a relationship between these two types of digraphs, as we shall now see.

Proposition 1. If D is a connected, randomly n-cyclic digraph of order p ($3 \leq n \leq p$), then D contains a spanning subdigraph $D(p_1, p_2, \ldots, p_n)$ for some positive integers p_1, p_2, \ldots, p_n (where then $\sum_{i=1}^{n} p_i = p$).

Proof. Certainly D contains an n-cycle so that D contains a subdigraph $D(1, 1, \ldots, 1)$. If $p = n$, then the proof is complete; so assume that $p > n$. Suppose that D contains a subdigraph $H \cong D(r_1, r_2, \ldots, r_n)$, where $\sum_{i=1}^{n} r_i < p$. Since D is connected, there exists a vertex v_1 of D such that $v_1 \notin V(H)$ and v_1 is adjacent to or adjacent from some vertex of H. Suppose that $V(H)$ is partitioned into subsets U_1, U_2, \ldots, U_n such that $|U_i| = r_i$ ($1 \leq i \leq n$) and $(u, v) \in A(H)$ if and only if $u \in U_i$ and $v \in U_j$, for some i and j with $j - i \equiv 1 \pmod{n}$.

Assume, without loss of generality, that v_1 is adjacent to a vertex of U_2. Let $u \in U_n$. Then there exists a path $v_1, u_2, u_3, \ldots, u_{n-1}, u$ in D, where $u_i \in U_i$ for $2 \leq i \leq n - 1$. Since D is randomly n-cyclic, the arc (u, v_1) belongs to D, i.e., every vertex of U_n is adjacent to v_1. Let $w \in U_2$. Then there exists a path $w, u_3, u_4, \ldots, u_n, v_1$, where $u_i \in U_i$ for $3 \leq i \leq n$. Since D is randomly n-cyclic, the arc (v_1, w) belongs to D, i.e., every vertex of U_2 is adjacent from v_1. If we let $H' = \langle V(H) \cap \{v_1\} \rangle$, then $H' \cong D(p_1, p_2, \ldots, p_n)$.