Composition and Structure of Some Consumer-available Edible Fats

P.W. PARODI, The Butter Marketing Board, Hamilton Central, 4007 Queensland, Australia

ABSTRACT

Samples of polyunsaturated margarines, table margarines, hard cube polyunsaturated vegetable oil, hard cube vegetable oil, animal fat, and blends of vegetable oil and animal fat were analyzed for fatty acid composition, percentage of cis,cis-methylene interrupted polyunsaturated fatty acids, percentage isolated trans-unsaturation, and percentage conjugated diene. Gas liquid chromatography was used to separate and measure the geometric isomers of the octadecenoic and octadecadienoic acids. Selected samples were analyzed for the content of positional isomers in their cis monoene and trans monoene fractions, and for the percentage of fatty acid esterified in the 2-position of their triglycerides.

INTRODUCTION

There is a growing need for thorough and reliable information on the nutrient composition of all human foods (1). Sources of dietary fat have been changing continuously since the early part of this century. Consumption of vegetable oils has risen, and there has been a shift from lard to shortening and from butter to margarine and an increase in the use of solid and cooking oils (2). In countries where these changes have occurred, the fatty acid content of the average diet has changed accordingly.

A large percentage of dietary fats has been hydrogenated, either chemically by the use of catalysts in the case of processed vegetable oils, or biologically by rumen microorganisms in the case of milkfat and the depot fat of ruminants. During hydrogenation, triglyceride fatty acids are isomerized both in positional and geometric configuration of their double bonds. Recent improved methodology allows the determination of isomeric fatty acids produced as a result of hydrogenation. Studies on the biological utilization of these modified fatty acids have been reviewed (3-5).

While the composition and structure of milkfat are well documented (6,7), those of other consumer-available dietary fats are not often recorded. This paper reports compositional data for margarines, cooking oils, and fat.

EXPERIMENTAL PROCEDURES

Samples

Samples of 1 lb cubes of table margarine, polyunsaturated table margarine, hard cube vegetable oil, hard cube polyunsaturated vegetable oil, animal fat, and blends of vegetable oil and animal fat were purchased at regular intervals from supermarkets in Brisbane, Australia, from August, 1973, to July, 1974. In the Australian context, table margarine usually refers to margarine manufactured from vegetable oils and hydrogenated vegetable oils as the sole or major component. Polyunsaturated table margarine is made solely from vegetable oils and hydrogenated vegetable oils, and contains not less than 40% cis,cis-methylene interrupted polyunsaturated fatty acids and not more than 20% of saturated fatty acids. Animal fat refers to refined beef tallow or mutton tallow or mixtures of the two. Fat was extracted from the margarines by melting at 45°C, centrifuging, and filtering through filter paper to dry the samples. Oil and fat samples were melted and used without further treatment, and all samples were stored under nitrogen at -20°C until required for analysis.

Determination of trans-Unsaturation

Isolated trans-unsaturation was determined by IR spectroscopy using AOAC method 28.047 (8). Methyl elaidate (Applied Science Laboratories, Inc., State College, PA) was used as a standard.

Determination of Conjugated Double Bonds

The percentage of conjugated double bonds was determined spectrophotometrically using AOCS Official Method Cd 7-58 (9).

Enzymatic Determination of Polyunsaturated Fatty Acids

The content of cis,cis-methylene interrupted polyunsaturated fatty acids was determined using the interim methodology of Luddy et al. (10). Lipoxidase was obtained from Sigma Chemical Company, St. Louis, MO. Methyl linoleate (Applied Science Laboratories, Inc.) was used for standardization.

Pancreatic Lipase Decacylation of Triglycerides

The percentage of fatty acids in the sn-2-position of the triglycerides was determined using the semi-micro procedure of Luddy et al. (11) with modifications reported by Litchfield (12). After decacylation, the components were applied as a streak onto a 20 cm x 20 cm glass thin layer chromatography (TLC) plate, coated to a thickness of 0.3 mm with Kieselgel G (E. Merck, Darmstadt, Germany) containing 8% (W:W) boric acid. The plates were developed using the solvent system diethyl ether:hexane (60:40). Bands were visualized under UV light after being sprayed with a methanolic solution containing 0.025% 2,7'-dichlorofluorescein and 0.005% Rhodamine B. The band representing 2-monoglycerides was scraped from the plate into a chromatography column containing 3 cm plug of Florisil and eluted with diethyl ether.

Argentation Thin Layer Chromatography

Fatty acid methyl esters were separated according to the number, and geometric configuration of the double bonds by TLC on 20 cm x 20 cm glass TLC plates coated to a thickness of 0.3 mm with Kieselgel G containing 10% (W:W) silver nitrate. The plates were developed using the solvent system hexane:diethyl ether (92:8).

Determination of Positional Isomers

The position of the double bonds in cis and trans monenes was determined by ozonolysis (13). The methyl esters dissolved in carbon disulphide were cooled to -65°C when ozonized oxygen was passed for up to 40 sec using a Supelco microozonizer. Ozonides were decomposed in situ with triphenyl phosphine. The resulting aldehydes and aldehyde esters were measured quantitatively by gas liquid chromatography (GLC). Glass columns, 2 m x 2 mm ID, packed with a mixture of 75% of 10% OV 17 on 100-120 mesh Gas-Chrom Q and 25% of 10% OV 225 on 100-120 mesh Gas-Chrom Q (14) (Applied Science Laboratories, Inc.), were temperature programmed from 40°C to 275°C at 4°C/min. Injector and detector temperatures were 225°C and 250°C, respectively. Carrier gas flow rate was 25 ml/min. Identification of fragments was made using an

530
homologous series of aldehydes (Supelco, Inc., Bellefonte, PA) and by ozonolysis of fatty acid methyl esters of known positional configuration. Response factors were applied to correct for lack of response in the flame ionization detector by carboxyl and carbonyl carbon atoms.

Gas Liquid Chromatography of Fatty Acid Methyl Esters

Methyl esters were prepared from triglycerides and 2-monoglycerides by the method of Christopherson and Glass (15). They were analyzed isothermally at 175°C on a 2 m x 2 mm ID glass column packed with 10% EGSS-X on 100-120 mesh Gas-Chrom P (Applied Science Laboratories, Inc.). Injector and detector temperatures were 225°C and 250°C, respectively. Carrier gas flow rate was 25 ml/min.

A GLC separation of geometric isomers of methyl octadecenoates and methyl octadecadienoates was obtained using a 3.65 m x 2 mm ID stainless steel column packed with 10% Apolar-10C on 100-120 mesh Gas-Chrom Q (Applied Science Laboratories, Inc.). The column was operated isothermally at 170°C. Injector and detector temperatures were 230°C and 250°C, respectively. Carrier gas flow rate was 20 ml/min.

Standard fatty acid methyl esters obtained from Applied Science Laboratories, Inc., were used to obtain correction factors for nonlinearity of detector response. Methyl cis, trans-(trans, cis) octadecadienoate was prepared from linoleic acid by isomerization with nitrous acid (16) followed by esterification and separation by preparative argentation TLC. All GLC analyses were carried out using a Varian-Aerograph Model 1840 Gas Chromatograph. Quantitative results were obtained with the aid of a Varian-Aerograph Model 480 Digital Integrator.

Sterol Determination

The sterol composition of most of the samples used in this study was previously reported (17).

RESULTS AND DISCUSSION

Fatty Acid Composition

The composition of the 71 samples is given in Table I. In Australia the use of the term "polyunsaturated" when used in connection with fat products is restricted to those products in which the total acids present contain not less than 40% of cis,cis-methylene interrupted polyunsaturated fatty acids and not more than 20% of saturated fatty acids. At the time of this survey, there was no legal requirement for a manufacturer to comply with this definition. All 40 samples of polyunsaturated margarine contained <20% of saturated fatty acids and >40% 18:2 acids as measured by GLC. However, only half of the samples contained >40% cis,cis-methylene interrupted polyunsaturated fatty acids. Table margarines contained approximately half the 18:2 content of polyunsaturated table margarines. This was compensated for by increased palmitic acid content.

Hard cube polyunsaturated vegetable oils, hard cube vegetable oils, animal fats, and blends of vegetable oil and animal fat are used for frying, deep frying, and roasting. The hard cube polyunsaturated vegetable oils had a composition similar to the polyunsaturated table margarines. On the basis of sterol composition (17) and fatty acid composition, the hard cube vegetable oils are considered to consist mainly of palm oil. Of the 12 samples labeled "blended vegetable and animal oil," 5 samples did not contain vegetable oil at all as judged by the absence of phyto-sterols in the GLC sterol profile (17). The remaining 7 samples contained little vegetable oil on the evidence of their cholesterol and phytosterol content. The fatty acid profile of the animal fat was typical of that from the depot fat of oxen and sheep.