The pressure of the geodesic flow on a negatively curved manifold

David Ruelle

Manning [5] has identified the rate of exponential growth of the volume of a ball of radius \(r \) on the universal cover of a compact manifold \(M \) of negative curvature: it is the entropy of the geodesic flow on \(M \). See also Sullivan [7], Chen [3], Chen and Manning [4]. Here we indicate an extension of Manning's result, where the entropy is replaced by the topological pressure \(P(A) \) associated with a function \(A \) on the tangent bundle. It turns out that the Riemann volume used by Manning plays no special role and may be replaced by many other measures.

Let \(M \) be a compact Riemann manifold with strictly negative sectional curvatures everywhere. We denote by \(\tilde{M} \) the universal cover of \(M \) (with the induced metric), by \(p:\tilde{M}\to M \) the canonical projection, and by \(N \) a fundamental domain of finite diameter \(a \). We call \(B(x,r) \) the ball with center \(x \) and radius \(r \) in \(\tilde{M} \). Let \(\mu \) be a positive Radon measure on \(\tilde{M} \), such that there are \(\alpha, \beta, b > 0 \) with

\[
\alpha \leq \mu(B(x,b)) \leq \beta
\]

for all \(x \in \tilde{M} \).

We denote by \(T^{(1)}M \) the unit tangent bundle and let

\[
A:T^{(1)}M\to \mathbb{R}
\]

be a continuous function. For any pair \(x,y \in \tilde{M} \), let \(\sigma(t) \) be the point of abscissa \(t \in [0,d(x,y)] \) on the unique geodesic segment \(xy \) from \(x \) to \(y \).

We define

\[
A_{xy} = \int_{0}^{d(x,y)} A(T_{t}(p\sigma(t)))dt
\]

and, for \(0 < r_{1} < r_{2} \),

\[
Z(x,r_{1},r_{2}) = \int_{B(x,r_{2})\setminus B(x,r_{1})} \mu(dy) \exp A_{x,y}.
\]

Received on 15/9/80.
Theorem. Let $c \geq 2(a+b)$, then

\[\lim_{r \to \infty} \frac{1}{r} \log Z(x,r,r-c) = P(A) \]

uniformly with respect to x, where $P(A)$ is the pressure of A with respect to the geodesic flow (f^t) on $T^{(1)}M$.

Our proof will closely follow that of Manning for the case $A = 0$ (see [5]).

We shall use the formulae (cf. [2])

\[P(A) = \lim_{\delta \to 0} P^\pm(A,\delta) \]
\[P^\pm(A,\delta) = \lim_{r \to \infty} \sup \frac{1}{r} Z_r^\pm(A,\delta) \]

\[Z_r^+(A,\delta) = \sup \left\{ \sum_{\xi \in \mathcal{S}} \exp \int_0^r A(f^t\xi) dt : S \text{ is } (r,\delta) \text{ separated} \right\} \]
\[Z_r^-(A,\delta) = \inf \left\{ \sum_{\xi \in \mathcal{S}} \exp \int_0^r A(f^t\xi) dt : S \text{ is } (r,\delta) \text{ spanning} \right\} \]

These formulae are easily related to those for the time 1 map f^1 and the function $A^1 = \int_0^1 dt \, A \cdot f^t$.

Lemma. Given $\delta, \Delta > 0$ there is R such that if $\sigma, \tau : [0,r] \to \bar{M}$ are two geodesics with $\sigma(0) = \tau(0)$, then $d(\sigma(r), \tau(r)) \leq \Delta$ and $r \geq R$ imply

\[d(T_t \sigma(t), T_t \tau(t)) \leq \delta \]

in $T^{(1)}\bar{M}$ for $t \in [0,r-R]$.

This is a form of Lemmas 1 and 2 of Manning corresponding to strictly negative curvature: geodesics diverge exponentially.

We shall use the fact, given $\epsilon > 0$, for $d(y,z) \leq$ constant, and sufficiently large $d(x,y)$,

\[|A_{xy} - A_{xz}| < \frac{1}{2} \epsilon \, d(x,y) \]