THE GENERALIZED GAUSS MAP OF MINIMAL SURFACES IN H^3 AND H^4

CÉLIA C. GÓES AND PLINIO A.Q. SIMÕES

1. Introduction

The object of this paper is to establish conditions for a C^∞ map of a Riemann surface M into Q_{n-2}, the hyperquadric $z_1^2 + \ldots + z_n^2 = 0$ of \mathbb{R}^{n-1}, to be the generalized Gauss map of a minimal conformal immersion of M into H^3 and H^4, the hyperbolic space of dimensions three and four respectively. Using the upper half-hyperplane as model for the hyperbolic space and exploiting the conformality between the metrics induced on M, by the euclidean metric and the hyperbolic metric through the immersion, we can adapt the theory developed by Hoffman and Osserman [H-O,2] to obtain the conditions.

2. Basic facts

Let \langle , \rangle be the usual euclidean metric on \mathbb{R}^n and let \mathbb{H}^n and \mathbb{H}^n_+, $n=3,4$, the set $\{(x,t) \mid x \in \mathbb{R}^{n-1}, t > 0\}$ endowed with the metrics $(x,t) = \frac{1}{t^2} \langle , \rangle$ and \langle , \rangle respectively. Given $(x,t) \in \mathbb{H}^n$, let $\hat{x} = (x^1, \ldots, x^{n-1}, 0) \in \mathbb{R}^{n-1}$. Thus $a, b \in \mathbb{H}^n$ implies that $L_{a,b}((x,t)) = \frac{b^n}{a^n} \hat{a}$ is an isometry of \mathbb{H}^n such that $L_{a,b}(a) = b$, $(L_{a,b})^* (v) = \frac{b^n}{a^n} v$ for all v in the tangent space $T_a(\mathbb{H}^n)$. Let M be a Riemann surface and $\tilde{\theta}(p) = (x(p), t(p))$ be a conformal immersion of M into \mathbb{H}^n. If

Received in 10/01/87.
\(q = (0, \ldots, 0, 1) \in \mathbb{R}^n \), \((L_{\bar{\theta}}(p), q)_*\) sends \(T_{\bar{\theta}}(p)(\mathbb{R}^n) \) isometrically onto \(T_q(\mathbb{R}^n) \), which is \(\mathbb{R}^n \) endowed with its usual inner product.

Let \(G_2(\mathbb{R}^n) \) be the grassmannian of the oriented 2-vector subspaces of \(\mathbb{R}^n \). The map \(\widetilde{G}: M \to G_2(\mathbb{R}^n) \) defined by \(\widetilde{G}(p) = (L_{\bar{\theta}}(p), q)_* \) is \(\widetilde{G}(T_p(M)) \) is the generalized Gauss map of \(\bar{\theta} \). It is well known that \(G_2(\mathbb{R}^n) \) can be identified with the hyperquadric \(Q_{n-2} = \{ [z] \in \mathbb{P}^{n-1} : \sum_{k=1}^{n} z_k^2 = 0 \} \) of the \((n-1)\)-dimensional complex projective space. Such identification will be assumed throughout this paper.

Now let \(z = u + iv \) be local isothermal parameters for \(M \) and let \(\theta \) be a conformal immersion of \(M \) into \(\mathbb{R}^n \) given by \(\theta(p) = \bar{\theta}(p) \) \(\forall \ p \in M \). Then

\[
(2.1) \quad \widetilde{G}(z) = \frac{\partial \theta}{\partial u} - i \frac{\partial \theta}{\partial v} = \frac{\partial \theta}{\partial z},
\]

where \(\frac{\partial \theta}{\partial z} = 1/2 \left(\frac{\partial \theta}{\partial u} - i \frac{\partial \theta}{\partial v}, \ldots, \frac{\partial \theta}{\partial u} - i \frac{\partial \theta}{\partial v} \right) \in \mathbb{C}^n \).

If \(\phi(z) = (\phi_1(z), \ldots, \phi_n(z)) \in \mathbb{C}^n \) is a homogeneous local expression of \(\widetilde{G}(z) \), there is \(\psi: M \to \mathbb{C} - \{0\} \) such that

\[
(2.2) \quad \frac{\partial \psi}{\partial z} = \psi \phi.
\]

Let \(ds^2 \) be the riemannian metric induced on \(M \) by \(\theta \),
\[
\frac{\partial}{\partial z} = 1/2 \left(\frac{\partial}{\partial u} + i \frac{\partial}{\partial v} \right), \quad \Delta \text{ the Laplace-Beltrami operator of } M \text{ with respect to } ds^2, \lambda^2 = \left| \frac{\partial \theta}{\partial u} \right|^2 = \left| \frac{\partial \theta}{\partial v} \right|^2, \quad H \text{ the mean curvature vector of } \theta. \text{ It is well known that}
\]

\[
(2.3) \quad \Delta \theta = \frac{4}{\lambda^2} \frac{\partial^2}{\partial z^2} - \frac{\partial^2}{\partial z^2} \theta = 2H.
\]

Indicating by \(\langle , \rangle \) the usual hermitian inner product on \(\mathbb{C}^n \), let

\[
(2.4) \quad V = \phi - n \phi,
\]