A theorem of the Phragmén–Lindelöf type for second-order elliptic operators

By Lars Lithner

1. Introduction and notations

Let \mathbb{R}^n be the real n-dimensional Euclidean space with coordinates $x = (x_1, x_2, \ldots, x_n)$, $|x| = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}$. C denotes the set of all complex-valued infinitely differentiable functions on \mathbb{R}^n with compact supports and $L^2(\Omega)$ is the Hilbert space of all complex-valued square integrable functions on the set Ω.

In \mathbb{R}^1 let D be the domain $\{x \mid x \geq a\}$ where a is arbitrary and let L be the differential operator

$$-\left(\frac{d}{dx}\right)^2 + \lambda, \lambda > 0.$$

The solutions of $Lu = 0$ are

$$u(x) = C_1 e^{\sqrt{\lambda} x} + C_2 e^{-\sqrt{\lambda} x},$$

where C_1 and C_2 are arbitrary constants. From this we conclude that if a solution is bounded in the domain D or if it belongs to $L^2(D)$ then it decreases like $e^{-\sqrt{\lambda} x}$ when x tends to infinity and the same holds for its derivative. In particular, $ue^{\mu x}$ and $(du/dx)e^{\mu x}$ belong to $L^2(D)$ if $\mu < \sqrt{\lambda}$.

In this paper we shall extend this result to second-order elliptic differential operators in \mathbb{R}^n.

$$L = -\sum_{i,k=1}^n a_{ik}(x) \frac{\partial^2}{\partial x_i \partial x_k} + \sum_{k=1}^n b_k(x) \frac{\partial}{\partial x_k} + a(x),$$

where $D_{ik} = \partial^2/\partial x_i \partial x_k$, $D_k = \partial/\partial x_k$ and $a_{ik}(x) = a_{ki}(x)$ (for simplicity we confine ourselves to the real domain).

Giving the result of the general case at the end of the paper we start with the operator $L = -\Delta + a(x)$, where Δ is the Laplace operator in \mathbb{R}^n and where a is positive and continuous or, more generally, locally bounded and Borel measurable. Then we can prove that if u is a solution of $Lu = 0$ outside some compact set K and if u belongs to $L^2(\mathbb{R}^n - K)$ then, in the same sense as above, u and its first derivatives decrease exponentially like $e^{-\varphi(x)}$ when $|x|$ tends to infinity. $\varphi(x)$ is the geodetic distance from the origin to the point x in the metric $ds^2 = a(x)(dx_1^2 + dx_2^2 + \ldots + dx_n^2)$.
2. The special case

Let \(D \) be the domain \(\{ x \mid |x| \geq R \} \), where \(R \) is a positive number and let \(B \) be the boundary of \(D \). \(L \) is the operator \(-\Delta + a \) where the function \(a \) is strictly positive in \(\mathbb{R}^n \). Let \(\varphi(x) \) be the geodetic distance from the origin to the point \(x \) in the metric \(ds^2 = a(x)(dx_1^2 + dx_2^2 + \ldots + dx_n^2) \) that is, \(\varphi(x) \) is the greatest lower bound of

\[
\int_{\Gamma} a(y) \sqrt{dy_1^2 + dy_2^2 + \ldots + dy_n^2}, \quad y = (y_1, y_2, \ldots, y_n),
\]

where \(\Gamma \) is a piecewise continuously differentiable curve starting at the origin and ending at \(x \). Putting further conditions on \(\varphi \) will be continuously differentiable.

Lemma 1. \(|\text{grad} \varphi(x)| \leq \sqrt{a(x)} \).

Proof. It is evident from the definition of \(\varphi \) that

\[
|\varphi(x + \Delta x) - \varphi(x)| \leq \int_{\Gamma_0} \sqrt{a(y) \sqrt{dy_1^2 + dy_2^2 + \ldots + dy_n^2}},
\]

where \(\Gamma_0 \) is the straight line segment joining \(x \) and \(x + \Delta x \). This gives the inequality.

Lemma 2. (Carleman [1].) If \(u \) belongs to \(L^2(D) \) and is a solution of \(Lu = 0 \) then \(\sqrt{a} u \) and \(|\text{grad} u| \) belong to \(L^2(D) \).

Proof. Let \(\psi \) be a positive function in \(C \). Then we have

\[
0 = \int_D u(x)\psi(x)Lu(x)dx = \int_D a(x)\psi(x)u^2(x)dx - \sum_{i=1}^n \int_D u_i(x)u(x)\psi(x)dx,
\]

where

\[
u_{ik} = \frac{\partial^2 u}{\partial x_i \partial x_k}.
\]

By partial integration we get

\[
0 = \int_B M(u)ds + \sum_{i=1}^n \int_D u_i^2(x)\psi(x)dx + \sum_{i=1}^n u_i(x)u(x)\psi(x)dx + \int_D a(x)\psi(x)u^2(x)dx,
\]

where \(M(u) \) contains \(u \) and first derivatives of \(u \) and where \(ds \) denotes the surface element. In the third integral we can integrate by part once more and get

\[
\int_D \sum_{i=1}^n u_i(x)\psi_i(x)u(x)dx = \int_B M'(u)ds - \frac{1}{2} \sum_{i=1}^n \int_D \psi_{ii}(x)u^2(x)dx,
\]

where \(M' \) is an analogue of \(M \).