The Multivariate Extremal Index and the Dependence Structure of a Multivariate Extreme Value Distribution

A. P. Martins* and H. Ferreira

Department of Mathematics
University of Beira Interior, Portugal

Abstract

Let \(H \) be the limiting distribution of a vector of maxima from a \(d \)-dimensional stationary sequence with multivariate extremal index. We give necessary and sufficient conditions for \(H \) to have independent or totally dependent margins by using relations between the multivariate extremal index and the univariate extremal indexes.

A new functional family of multivariate extreme value distributions, containing \(H \), is introduced. We apply the results to characterize the asymptotic independence of the maximum and the minimum and compute the multivariate extremal index of the Multivariate Maxima of Moving Maxima process.

Key Words: Multivariate extremal index, dependence conditions, multivariate extreme value theory.

AMS subject classification: 60G70.

1 Introduction

Suppose \(X = \{X_n = (X_{n1}, \ldots, X_{nd})\}_{n \geq 1} \) is a \(d \)-dimensional stationary sequence with common distribution function \(F(x) = F(x_1, \ldots, x_d) \), \(x \in \mathbb{R}^d \). Let \(M_n = (M_{n1}, \ldots, M_{nd}) \) denote the vector of maxima where \(M_{nj} = \max\{X_{ij}, \ 1 \leq i \leq n\} \), \(j = 1, \ldots, d \). Denoting by \(\{X_n\}_{n \geq 1} \) the associated sequence of i.i.d. random vectors having the same \(d \)-dimensional d.f. \(F \), let \(\hat{M}_n = (\hat{M}_{n1}, \ldots, \hat{M}_{nd}) \) be the corresponding vector of maxima.

*Correspondence to: Ana P. Martins. Department of Mathematics, University of Beira Interior, 6200 Covilhã, Portugal. E-mail: smartins@noe.ubi.pt

Received: August 2003; Accepted: March 2004
If there exist sequences \(a = \{a_n = (a_{n1} > 0, \ldots, a_{nd} > 0)\}_{n \geq 1} \) and \(b = \{b_n = (b_{n1}, \ldots, b_{nd})\}_{n \geq 1} \) such that for \(u(x) = \{u_n(x) = (a_{n1}x_1 + b_{n1}, \ldots, a_{nd}x_d + b_{nd})\}_{n \geq 1} \),

\[
P(\hat{M}_n \leq u_n(x)) = P \left(\bigcap_{j=1}^{d} \{\hat{M}_{nj} \leq a_{nj}x_j + b_{nj}\} \right) \xrightarrow{n \to \infty} \hat{H}(x), \ x \in \mathbb{R}^d,
\]

where \(\hat{H} \) is a d.f. with non-degenerate margins, then the d.f. \(\hat{H} \) is a multivariate extreme value (MEV) distribution function, and one says that \(F \) is in the (multivariate) domain of attraction of \(\hat{H} \) (for the maxima). In particular, the univariate margins (or components) \(\hat{H}_j, j = 1, \ldots, d, \) of \(\hat{H} \) are extreme value distributions (Galambos, 1978; Resnick, 1987).

A MEV distribution function \(H \) can be characterized by its copula function \(D_H \) (or dependence function) which exhibits a number of interesting properties (Deheuvels, 1978; Hsing, 1989), namely its stability equation

\[
D_H^t(y_1, \ldots, y_d) = D_H(y_1^t, \ldots, y_d^t), \ \forall t > 0 \text{ and } (y_1, \ldots, y_d) \in [0, 1]^d. \quad (1.1)
\]

If the stationary sequence \(X \) satisfies some long range dependence conditions \((D(u(x))) \) of Hsing (1989) or \(\Delta(u(x)) \) of Nandagopalan (1990) and

\[
P(M_n \leq u_n(x)) \xrightarrow{n \to \infty} H(x), \ x \in \mathbb{R}^d, \quad (1.2)
\]

where \(H \) is a d.f. with non-degenerate components, then the d.f. \(H \) is also a MEV distribution function.

The relation between the MEV distribution functions \(H \) and \(\hat{H} \) can be expressed through the function multivariate extremal index \(\theta(\tau) = \theta(\tau_1, \ldots, \tau_d), \ \tau \in \mathbb{R}_+^d \), introduced by Nandagopalan (1990).

A \(d \)-dimensional stationary sequence \(X \) is said to have a multivariate extremal index \(\theta(\tau) \in [0, 1] \) if \(\forall \tau = (\tau_1, \ldots, \tau_d) \in \mathbb{R}_+^d \), \(\exists u^{(\tau)}_n = (u^{(\tau_1)}_{n1}, \ldots, u^{(\tau_d)}_{nd}), n \geq 1, \) satisfying

\[
nP(X_{ij} > u^{(\tau_j)}_{nj}) \xrightarrow{n \to \infty} \tau_j, \ j = 1, \ldots, d, \quad (1.3)
\]

\[
P(\hat{M}_n \leq u^{(\tau)}_n) \xrightarrow{n \to \infty} \hat{G}(\tau) \quad (1.4)
\]