HUMAN ARTERIAL SMOOTH MUSCLE CELLS IN CULTURE:
INVERSE RELATIONSHIP BETWEEN PROLIFERATION
AND EXPRESSION OF CONTRACTILE PROTEINS

GUNNAR FAGER, GöRAN K. HANSSON, ALLEN M. GOWN, DAVID M. LARSON,
OMAR SKALLI, AND GÖRAN BONDJERS

Arterial Biology Group, Wallenberg Laboratory for Cardiovascular Research, Department of Medicine I, University of G öteborg, G öteborg, Sweden (G. F., G. B.); Department of Clinical Chemistry, University of G öteborg, G öteborg, Sweden (G. K. H.); Department of Pathology, University of Washington, Seattle, Washington (A. M. G.); Cardiovascular Pathology, Mallory Institute of Pathology, Boston University School of Medicine, Boston, Massachusetts (D. M. L.); and Department of Pathology, University of Geneva, Geneva, Switzerland (O. S.)

(Received 23 August 1988; accepted 31 January 1989)

SUMMARY

Human arterial smooth muscle cells (hASMC) from explants of the inner media of uterine arteries were studied in secondary culture. We had previously found that these cells depend on exogenous platelet-derived growth factor (PDGF) for proliferation in vitro. Deprivation of the serum mitogen(s) by culture in plasma-derived serum or bovine serum albumin (BSA) caused a true growth arrest that was reversible upon reexposure to the mitogen(s). When added to serum-containing medium, heparin caused a reversible growth arrest which could be competed for by increasing concentrations of serum. In the current study we used a set of smooth muscle-specific actin and myosin antibodies to study the expression of contractile proteins in stress fibers under indirect immunofluorescence on hASMC in culture. Even in sparse culture, growth-arrested hASMC expressed stress fibers containing these actin and myosin epitopes. This was true irrespective of whether growth arrest was achieved by culture in media containing only BSA or a combination of heparin and whole blood serum. hASMC proliferating in whole blood serum in sparse culture did not express such stress fibers, as judged by immunofluorescent staining. This was true also for cells that were restimulated to proliferate in serum after a growth arrest. Utilizing a monoclonal antibody against a nuclear antigen expressed in proliferating human cells, we were able to demonstrate an inverse relationship between the expression of this antigen and the SMC-specific contractile proteins, respectively. Under these culture conditions, the reversible transition between dedifferentiated and differentiated hASMC was almost complete and terminated about 1 wk after the change in culture condition. We conclude that hASMC in vitro respond to exogenous PDGF by proliferation and dedifferentiation as a single population of cells. We also conclude that this modulation is reversible, because the cells become uniformly quiescent and differentiated when the mitogenic stimulus is blocked or removed.

Key words: smooth muscle cells; human; vascular; differentiation; cytoskeleton; actin; myosin.

INTRODUCTION

Increased arterial smooth muscle cell (ASMC) mass is typically found in the intimal lesions of advanced atherosclerosis as well as in the medial changes of arterial hypertension. The temporal sequence of events in human atherosclerosis can only be deduced from a few important observations of atheromatous tissue in humans. These are compatible with the concept that a reversible modulation between a differentiated (quiescent) (10,19,27) and a dedifferentiated (proliferative) (21,22) phenotype may occur among ASMC (possibly in response to external stimuli) during the atherosclerotic process. The mechanisms behind this process cannot, however, be studied in detail in man. Conclusions regarding possible mechanisms have instead been derived from extensive experimental studies of animal systems [reviewed in (24,26)]. The results of such studies may not be altogether relevant for man and need to be confirmed by, for example, in vitro studies of human ASMC.

We have previously isolated human ASMC (hASMC) and presented data on their growth control in culture (5). In summary, we found that the hASMC depended on exogenous platelet-derived growth factor (PDGF) for their proliferation in vitro. In plasma-derived serum...
(PDS) or in one percent bovine serum albumin (BSA),
hASMC became growth-arrested within 2 d and remained
quiescent for up to at least 7 d. This state was, however,
reversible upon reexposure to serum. The mitogenic
activity of serum was effectively counteracted by
anti-PDGF IgG. Under no condition that we studied in
vitro could we find any expression of PDGF mRNA in
hASMC, as indicated by Northern blots using both A and B
chain cDNA probes. When added to the medium, heparin
inhibited the mitogenic effect of serum on hASMC in a
dose-dependent, reversible and competitive way. Our
results suggest that the effect of heparin is due to
interference with the binding of PDGF to its cell surface
receptor. This conclusion was based on the observation
that hASMC expressed PDGF receptors on their surface
when heparin was added to a serum-containing medium.
In the absence of heparin, the receptor was down-
regulated in serum-containing media.

In this study we do not address the well-established
differentiation that occurs in spite of the presence of
mitogens through contact inhibition in postconfluent
SMC cultures (3,23,25). Instead, the current study was
aimed at investigating whether the mitogen-dependent
and reversible transition between quiescent and prolifer-
ating hASMC in sparse culture was associated with a
modulation in phenotype, as determined by the expres-
sion of SMC-specific contractile proteins in stress fibers
at the level of the individual cell.

MATERIALS AND METHODS

Materials. The basal medium (BM) in this study was
Waymouth’s MB 7521 medium containing 10° IU/liter
penicillin, 100 g/ml streptomycin, 1 mM sodium
pyruvate, and 4 mM L-glutamine. These components, as
well as trypsin (no. 16-893) and Earle’s balanced salt
solution without Ca++ and Mg++ (EBSS), were from
Flow Laboratories (Irvine, Scotland). Culture flasks (80
cm²) and petri dishes (10 cm²) came from Nunclon
(Roskilde, Denmark) and fetal bovine serum (FBS) from
Tissue Culture Services (Berkshire, UK). Human serum
(HS) was obtained from healthy volunteers. Bovine serum
albumin (Fraction V, no. A 4503) was provided by Sigma
Chemical Company (St. Louis, MO). Heparin sodium
powder (Heparin Sodium Pure) from swine mucosa was a
gift from Leo Pharmaceutical Products (Ballerup,
Denmark).

In the individual experiments, the BM was supplement-
ed with sera, BSA, or heparin as indicated.

Antibodies. A monoclonal antibody against SMC-
specific alpha and gamma actin isoforms (CGA7) has
previously been characterized (9). CGA7 stains growth-
arrested, but not proliferating rat ASMC, and has been
found to be a marker of SMC differentiation (23). A
second monoclonal antibody against smooth, cardiac,
and skeletal muscle alpha actin and smooth muscle
gamma actin isoforms (HHF35) (28), as well as a third
monoclonal that reacts exclusively with smooth muscle
alpha actin (anti-asm-1) (27), was also used to stain
SMC-specific actins. A rabbit antisem against SMC-
specific myosin (ASMM) was used to detect myosin-
containing stress fibers in SMC. ASMM antisem reacts with
the heavy chain (200 kDa) of myosin in mature cells in
vascular and visceral smooth muscle (18,19). The four an-
tibody preparations were known to react with human actin
and myosin epitopes, respectively.

We used a monoclonal antibody to stain proliferating
cells (PC) in culture. This PC antibody (Ki-67)
(Dakopatts, Copenhagen, Denmark) specifically recog-
nizes an antigen expressed in the nuclear membrane of
human cells in G1 (late), S, G2, and M phases of the cell
cycle (8).

Fluorescein-(FITC) and rhodamine-(TRITC) conjugat-
ed rabbit antimouse immunoglobulins, as well as TRITC
swine antirabbit immunoglobulins and nonimmune
swine serum, were provided by Dakopatts (Copenhagen,
Denmark). Para-phenylenediamine (PPD) was purchased
from Fluka AG (Buchs, Switzerland).

Cells and cell culture conditions. Primary cultures of
hASMC from the inner media of human uterine arteries
were established with the explantation technique previ-
ously described (5). The studies were carried out using
cells in Passages 5 to 8. Bulk preparation of cells for the
experiments was made in BM supplemented with HS and
FBS at concentrations of 10% (vol/vol) each. This
medium was designated S-BM and has been found to
induce a rapid proliferation of hASMC in vitro (5).

Growth arrest of sparse cells was achieved either by
adding heparin (10 g/liter) to S-BM or by replacing the
sera with 1% (wt/vol) BSA. These media were
designated HEP-BM and BSA-BM, respectively, and their
effects on hASMC proliferation have been described (5).

Cells were harvested by trypsinization and passed as
previously described (5). The counting of cells was done
in an AI Cell Counter 134 (AnalyS Instrument, Solna,
Sweden).

Immunofluorescence studies of cells in culture. In all
experiments the cells were seeded in S-BM on gelatin-
coated glass cover slips in 10-cm² petri dishes. The
medium was changed after 16 to 18 h. Thereafter, the
medium was changed every 3rd d.

Proliferating cells were studied in sparse cultures
seded at 2 × 10⁶ cells/cm² and grown for 4 d in S-BM
before preparation for immunofluorescence of contracti-
tile proteins. Growth-arrested cells were also studied in
sparse cultures. They were seeded at 10³ cells/cm²,
grown for 4 d in S-BM and for another 6 d in BSA-BM or
HEP-BM before immunofluorescence. Restimulated
cells were prepared in the same way as growth-arrested
cells, except that growth-arrest in BSA-BM or HEP-BM
was followed by incubation in S-BM, and cover slips were
taken for immunofluorescence of contractile proteins
both 3 and 6 d later.

Expression of the PC nuclear antigen and SMC-specific
contractile proteins in sparse hASMC cultures was
studied in a time-course experiment. hASMC were seeded
on gelatin-coated glass cover slips at 10⁶ cells/cm² as
before and grown in S-BM for 2 d. Growth arrest was then
induced by culture in BSA-BM for 7 d and, finally, the
cells were restimulated to grow in S-BM for another 7 d.
During this incubation, triplicate cover slips were taken