Embedding Problem and Functional Equations

Zhang Mei-rong

Department of Mathematics, Peking University, Beijing 100871

Received November 21, 1988 Revised August 22, 1989

Abstract. In this paper we give a method for solving the functional equations arising from the differential embedding problem. We also obtain the conditions for embedding one-dimensional diffeomorphisms into differential flows.

§1. Introduction

In this paper, we consider how to embed diffeomorphisms into differential flows.

For the continuous embedding problem, there are many results for 1-dimensional homeomorphisms ([1]–[3]). Some authors even consider how to embed continuous maps into semi-flows (see [2], [4]). However, most of these works are based on the idea of Sternberg [5].

For the differential embedding problem, Palis [6] pointed out that the diffeomorphisms which can be embedded into flows generated by vector fields with some smoothness are "few". In [7], Lam considered how to embed C^1 diffeomorphisms on intervals of R^1 into flows with some smoothness. He also obtained the conditions for embedding C^1 diffeomorphisms on intervals into C^1 flows ([8],[9]).

As the differential embedding problem is meaningful in the study of non-local bifurcation theory, we will use a basic relation between flows and vector fields to consider this problem. In Sect. 2 we show that a function on C actually solves the embedding problem. This answers a question posed by the authors of [10]. In Sect.3, we obtain the solutions of 1-dimensional embedding equations. Furthermore, we can use these solutions to obtain the conditions for embedding C^2 diffeomorphisms on intervals into C^1 vector fields (see Theorem 2). Sect.4 contains some discussions on the conditions in Sect.2 and some extensions of Theorem 2.

§2. Embedding Equations

Let M be a smooth manifold. Let $f \in Diff^r(M)$ be a C^r diffeomorphism. We say that f can be embedded into C^r flows if there is a C^r flow $F : R \times M \rightarrow M$ such that
$F_t(\cdot) = F(\cdot, 1) = f$. Of course, the case $r = 0$ means that f is a homeomorphism and F a continuous flow. In this paper, we say that $f \in \text{Diff}^r(M)(r \geq 1)$ is embedded into a C^* vector fields $V \in X^s(M)(0 \leq s < r)$ if f is embedded into the flow $\{F_t\}$ generated by V, i.e., $\{F_t\}$ satisfies
\begin{equation}
\frac{dF_t(x)}{dt} = V(F_t(x)), \quad t \in \mathbb{R}^1, \quad x \in M
\end{equation}
and
\begin{equation}
F_0 = \text{id}.
\end{equation}

It is well known that if $\{F_t\}$ is the flow generated by $V \in X(M)$, then V must satisfy the following functional equation:
\[V(F_t(x)) = DF_t(x)V(x), \quad t \in \mathbb{R}^1, \quad x \in M. \]

Especially, if $f \in \text{Diff}^r(M)$ is embedded into a vector field $V \in X(M)$, then V satisfies the following embedding equation:
\begin{equation}
V(f(x)) = Df(x)V(x), \quad x \in M.
\end{equation}

Of course, for a given $f \in \text{Diff}^r(M)$, in general we don't know whether a solution V of Eq.(3) solves the embedding problem for f. However, the function ϕ defined in Sect. 2 in [10] actually solves the embedding problem.

Let us first formulate the question. Let $w(z)$ be an analytic function near $z = 0$ and $w^r(z)$ its rth iteration ($r = 0, 1, 2, \ldots$). If $w(0) = 0$ and $w'(0) = \alpha$ for some real number $\alpha \in (0, 1)$, McKiernan (1963) proved that the series
\begin{equation}
\phi(z) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sum_{i=0}^{n} \binom{n}{i}(-1)^{n-i}w^i(z)
\end{equation}
converges in some neighborhood B_0 of $z = 0$ and ϕ satisfies
\begin{equation}
\phi(w(z)) = w'(z)\phi(z), \quad z \in B_0.
\end{equation}

We can show that ϕ solves the embedding problem for w, i.e., ϕ generates a local flow $w_t(z)$ such that $w_1 = w$.

Firstly we have
\begin{equation}
\phi'(0) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sum_{i=0}^{n} \binom{n}{i}(-1)^{n-i} \alpha^i = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}(-1 + \alpha)^n,
\end{equation}
i.e.
\begin{equation}
\phi'(0) = \ln \alpha.
\end{equation}

Since 0 is an attracting fixed point of w, by the complex dynamics (Theorem 3.3 in [11]), we know that
\begin{equation}
h_n(z) = \frac{w^n(z)}{\alpha^n}
\end{equation}