Wavelet Sets in \mathbb{R}^n

Xingde Dai, David R. Larson, and Darrin M. Speegle

ABSTRACT. A congruency theorem is proven for an ordered pair of groups of homeomorphisms of a metric space satisfying an abstract dilation-translation relationship. A corollary is the existence of wavelet sets, and hence of single-function wavelets, for arbitrary expansive matrix dilations on $L^2(\mathbb{R}^n)$. Moreover, for any expansive matrix dilation, it is proven that there are sufficiently many wavelet sets to generate the Borel structure of \mathbb{R}^n.

A dyadic orthonormal (or orthogonal) wavelet is a function $\psi \in L^2(\mathbb{R})$, (Lebesgue measure), with the property that the set

$$\{2^n \psi(2^n t - l): n, l \in \mathbb{Z}\}$$

is an orthonormal basis for $L^2(\mathbb{R})$ (see [1, 2]). For certain measurable sets, E, the normalized characteristic function $\frac{1}{\sqrt{2\pi}} x_E$ is the Fourier transform of such a wavelet. There are several characterizations of such sets (see [3] chapt. 4, and independently [5]). In [3] they are called wavelet sets. In [5, 6, 7] they are the support sets of MSF (minimally supported frequency) wavelets.

Dilation factors on \mathbb{R} other than 2 have been studied in the literature, and analogous wavelet sets corresponding to all dilations > 1 are known to exist ([3], Example 4.5, part 10). Matrix dilations (for real expansive matrices) on \mathbb{R}^n have also been considered in the literature, usually for a "multi-

notion of wavelet. The translations involved are those along the coordinate axes. The purpose of this article is to prove a general-principle type of result that shows, as a corollary, that analogous wavelet sets exist (and are plentiful) for all such dilations. In particular, "single-function" wavelets always exist. This appears to be new. Theorem 1 seems to belong to the mathematics behind wavelet theory. For this reason we prove it in a more abstract setting than needed for our wavelet results. Essentially, it is a dual-dynamical system congruency principle. The general proof is no more difficult than that for \mathbb{R}^n.

We point out that the wavelets we obtain, which are analogs of Shannon’s wavelet, need not satisfy the regularity properties often desired (see [8]) in applications.

Acknowledgements and Notes. The first author is supported in part by AFOSR grant F49620-96-1-0481 and a grant from the University of North Carolina at Charlotte. He was a participant in Workshop in Linear Analysis and Probability, Texas A&M University.

The second author is supported in part by NSF Grant DMS-9401544.

The third author was a Graduate Research Assistant at Workshop in Linear Analysis and Probability, Texas A&M University.

© 1997 CRC Press LLC
ISSN 1069-5869
there are measurable partitions \(\{ E_g : g \in G \} \) and \(\{ F_g : g \in G \} \) of \(E \) and \(F \), respectively, such that \(F_g = g(E_g) \) for each \(g \in G \), modulo \(m \)-null sets.

If \(r > 0 \) and \(y \in X \), we write \(B_r(y) := \{ x \in X : \| x - y \| < r \} \), and abbreviate \(B_r := B_r(0) \).

We will say that \((D, T)\) is an abstract dilation-translation pair if (1) for each bounded set \(E \) and each open set \(F \) there are elements \(\delta \in D \) and \(\tau \in T \) such that \(\tau(E) \subseteq \delta(F) \), and (2) there is a fixed point \(\theta \) for \(D \) in \(X \) which has the property that if \(N \) is any neighborhood of \(\theta \) and \(E \) is any bounded set, there is an element \(\delta \in D \) such that \(\delta(E) \subseteq N \).

Theorem 1.

Let \(X, B, m, D, T \) be as above, with \((D, T)\) an abstract dilation-translation pair, and with \(\theta \) the \(D \)-fixed point as above. Let \(E \) and \(F \) be bounded measurable sets in \(X \) such that \(E \) contains a neighborhood of \(\theta \), and \(F \) has nonempty interior and is bounded away from \(\theta \). Then there is a measurable set \(G \subseteq X \), contained in \(\bigcup_{\delta \in D} \delta(F) \), which is both \(D \)-congruent to \(F \) and \(T \)-congruent to \(E \).

Proof. We will use the term "\(D \)-dilate" to denote the image of a set \(\Omega \) under an element of \(D \), and "\(T \)-translate" for the image of \(\Omega \) under an element of \(T \).

We will construct a disjoint family \(\{ G_{ij} : i \in \mathbb{N}, j \in \{1, 2\} \} \) of measurable sets whose \(D \)-dilates form a partition \(\{ F_{ij} \} \) of \(F \) and whose \(T \)-translates form a partition \(\{ E_{ij} \} \) of \(E \), modulo \(m \)-null sets. Then \(G = \bigcup_{i,j} G_{ij} \) will clearly satisfy our requirements. The \(i \)th induction step will consist of constructing \(G_{11} \) and \(G_{12} \).

Let \(\{ \alpha_i \} \) and \(\{ \beta_i \} \) be sequences of positive constants decreasing to 0. Let \(N_1 \subseteq E \) be a ball centered at \(\theta \) with radius \(\alpha_1 \) such that \(m(E \setminus N_1) > 0 \). Let \(E_{11} = E \setminus N_1 \).

Observe that we may choose \(\delta_1 \in D \), \(\tau_1 \in T \), so that \((\delta_1^{-1} \circ \tau_1)(E_{11}) \) is a subset of \(F \) whose relative complement in \(F \) has a nonempty interior. This is possible since the interior of \(F \) is nonempty, and there is a \(\delta_1 \)-dilate of \(F \) which contains a ball large enough to contain some \(\tau_1 \)-translate of \(E \) with ample room left over. Now set \(F_{11} := (\delta_1^{-1} \circ \tau_1)(E_{11}) \). (In this context, clearly we may choose \(\delta_1 \) and \(\tau_1 \) such that, in addition, the \(\tau_1 \)-translate of \(E \) is disjoint from any prescribed bounded set — a fact that will be useful in the second and subsequent steps.)

Let \(G_{11} := \tau_1(E_{11}) = \delta_1(F_{11}) \). Since \(\delta_1 \) is a homeomorphism of \(X \) which fixes \(\theta \), \(G_{11} \) is bounded away from \(\theta \) since \(F_{11} \) is. Let \(F_{12} \) be a measurable subset of \(F \) of positive measure, disjoint from \(F_{11} \), such that the difference \(F \setminus (F_{11} \cup F_{12}) \) has a nonempty interior and measure \(< \beta_1 \). Choose \(\gamma_1 \in D \) such that \(\gamma_1(F_{12}) \) is contained in \(N_1 \) and is disjoint from \(G_{11} \). Set \(E_{12} := \gamma_1(F_{12}) \), and set \(G_{12} := E_{12} \). The first step is complete.

For the second step, note that since \(F \) is bounded away from \(\theta \), \(N_1 \setminus E_{12} \) contains a ball \(N_2 \) centered at \(\theta \) with radius \(< \alpha_2 \) such that \(N_1 \setminus (E_{12} \cup N_2) \) has positive measure. Let

\[
E_{21} := N_1 \setminus (E_{12} \cup N_2) = E \setminus (E_{11} \cup E_{12} \cup N_2).
\]

Choose \(\delta_2 \in D \), \(\tau_2 \in T \), using similar reasoning to that used above, such that \((\delta_2^{-1} \circ \tau_2)(E_{21}) \) is a subset of \(F \setminus (F_{11} \cup F_{12}) \) whose relative complement in \(F \setminus (F_{11} \cup F_{12}) \) has a nonempty interior, and for which \(\tau_2(E_{21}) \) is disjoint from \(G_{11} \) and \(G_{12} \). Let \(F_{21} := (\delta_2^{-1} \circ \tau_2)(E_{21}) \), and let \(G_{21} := \tau_2(E_{21}) \).

Choose a measurable subset \(F_{22} \subset F \) of positive measure disjoint from \(F_{11} \), \(F_{12} \), \(F_{21} \) such that \(F \setminus (F_{11} \cup F_{12} \cup F_{21} \cup F_{22}) \) has a nonempty interior and measure \(< \beta_2 \). Noting that \(G_{11} \), \(G_{12} \), \(G_{21} \) are bounded away from \(\theta \), choose \(\gamma_2 \in D \) such that \(\gamma_2(F_{22}) \) is contained in \(N_2 \) and is disjoint from \(G_{11} \), \(G_{12} \), \(G_{21} \). Set \(E_{22} := \gamma_2(F_{22}) \), and let \(G_{22} := E_{22} \).

Now proceed inductively, obtaining disjointed families of sets of positive measure \(\{ E_{ij} \} \) in \(E \), \(\{ F_{ij} \} \) in \(F \), and \(\{ G_{ij} \} \), such that

\[
\delta_1^{-1}(G_{11}) = E_{11}, \quad G_{12} = E_{12}, \quad G_{21} = \delta_1^{-1}(G_{11}) = F_{11},
\]

\[
\gamma_1^{-1}(G_{12}) = F_{12}, \quad \text{for } i = 1, 2, \ldots \text{ and } j = 1, 2.
\]