STABLE DOUBLE LR ALGORITHM AND ITS ERROR ANALYSIS

CHEN, DAOQI*

(Math. Dept. & Center of Mathematics Sciences
Zhejiang Univ., Hangzhou, 310027)

ABSTRACT. In this paper, the normative matrices and their double LR transformation with origin shifts are defined, and the essential relationship between the double LR transformation of a normative matrix and the QR transformation of the related symmetric tridiagonal matrix is proved. We obtain a stable double LR algorithm for double LR transformation of normative matrices and give the error analysis of our algorithm. The operation number of the stable double LR algorithm for normative matrices is only four sevenths of the rational QR algorithm for real symmetric tridiagonal matrices.

Keywords. normative matrix, double LR transformation, stability.

AMS Subject Classification. 65A15, 65G05.

1. Introduction

The computation of matrix singular values and/or of eigenvalues of Hermite matrices, which is a big branch in numerical algebra, can be reduced to the computation of eigenvalues of real symmetric tridiagonal matrices. For the computation of matrix eigenvalues H. Rutishauser first in 1958 proposed the LR transformation process [1]. As a modification and improvement of the LR transformation process J. G. F. Francis in 1959 proposed the QR transformation process. Today the QR (or QL) transformation process has fully, both in theory and in practice, substituted by the LR transformation process [4,5,6] because of its numerical stability.

In this paper we propose a numerical stable algorithm for carrying out the double LR transformation process for normative tridiagonal matrices with origin shifts. The use of stable double LR algorithm instead of the use of rational QR algorithm [2] can save three sevenths of the total operation number in computation of eigenvalues of symmetric tridiagonal matrices.

In Section 2, we define the normative matrices and their double LR transformation with origin shifts. We prove that if A is the normative matrix related to a symmetric
tridiagonal matrix S, A' is the result of double LR transformation of A with origin shift σ, S' is the result of QR transformation of S with the same origin shift σ, then A' is the normative matrix related to S'. In Section 3, we propose our stable double LR algorithm. In Section 4, we give the error analysis in floating computation of our algorithm. In Section 5, a practical stable double LR algorithm is given.

2. Normative matrices and their double LR transformation

Definition 1. A real tridiagonal matrix A is said to be a normative matrix, if its super-diagonals are units and its subdiagonals are all nonnegative:

$$A = \begin{pmatrix} a_1 & 1 \\ b_2 & a_2 & 1 \\ & \ddots & \ddots & \ddots \\ & & * & * & * \\ & & & b_{n-1} & a_{n-1} & 1 \\ & & & & b_n & a_n \end{pmatrix}$$

with $b_i > 0, \ i = 2, \ldots, n$. (1)

We say the normative matrix A in Eq. (1) and a symmetric tridiagonal matrix

$$S = \begin{pmatrix} a_1 & \beta_2 \\ \beta_2 & a_2 & \beta_3 \\ & \ddots & \ddots & \ddots \\ & & * & * & * \\ & & & \beta_{n-1} & a_{n-1} & \beta_n \\ & & & & \beta_n & a_n \end{pmatrix}$$

are related (to each other), if $b_k = \beta_k^2, \ k = 2, \ldots, n$.

When A in Eq.(1) and S in Eq.(2) are related, they have the same spectral set, and moreover, they are diagonally similar if they are irreducible.

Definition 2. The double LR transformation of a normative matrix A with origin shift σ can be shown in the following process (if it is possible):

$$A - \sigma I =: LR, \quad (\text{decomposition}), \quad (3.1)$$

$$\hat{A} := RL, \quad (\text{recomposition}), \quad (3.2)$$

$$\hat{A} =: \hat{L}\hat{R}, \quad (\text{decomposition}), \quad (3.3)$$

$$A' := \hat{R}\hat{L} + \sigma I, \quad (\text{recomposition}). \quad (3.4)$$

Here the matrix decompositions are Doolittle decompositions. It is trivial that the super-diagonals of R, \hat{R}, \hat{A} and A' are units.

The following theorem is important for us.

Theorem 1. Suppose normative matrix A and symmetric tridiagonal matrix S are related, S' is the result of QR transformation of S with origin shift σ. If $A-\sigma I$ is