AN ALGORITHM FOR CONSTRUCTING A VARIETY OF ARBITRARY FINITE DIMENSION

D. M. Smirnov

The dimension of a variety V of algebras is the greatest length of a basis (i.e., of an independent generating set) for an SC-theory $SC(V)$, consisting of strong Mal'tsev conditions satisfied in V. The variety V is assumed infinite-dimensional if the lengths of the bases in $SC(V)$ are not bounded. A simple algorithm is found for constructing a variety of any finite dimension $r \geq 1$.

Using the sieve of Eratosthenes, r distinct primes p_1, p_2, \ldots, p_r are written and their product $n = p_1 p_2 \ldots p_r$ is computed. The variety G_n of algebras (A, f) with one n-ary operation satisfying the identity

$$f(z_1, z_2, \ldots, z_n) = f(z_2, \ldots, z_n, z_1)$$

has, then, dimension r.

INTRODUCTION

In [1], the dimension $\dim (V)$ of a variety V of algebras was defined to be the greatest length of a basis (i.e., of an independent generating set) for an SC-theory $SC(V)$ of V. The dimension is thought of as infinite if the lengths of the bases in $SC(V)$ are unbounded. Thus, $\dim (V)$ is also the dimension of the SC-theory $SC(V)$.

In [2], it was shown that a finitely based variety V may be infinite-dimensional. An example is any Cantor variety $C_{m,n}$ which has $m (\geq 1)$ n-ary $\{g_1, \ldots, g_m\}$ and $n (\geq m)$ m-ary $\{f_1, \ldots, f_n\}$ operations and is defined by the following identities:

$$f_i(g_1(z_1, \ldots, z_n), \ldots, g_m(z_1, \ldots, z_n)) = z_i, \quad i = 1, \ldots, n,$$

$$g_j(f_1(z_1, \ldots, z_m), \ldots, f_n(z_1, \ldots, z_m)) = z_j, \quad j = 1, \ldots, m.$$

By contrast, every Post variety P_n generated by a finite primal algebra of order $n \geq 2$ is finite-dimensional. In [2], in particular, it was shown that the dimension of a variety of Boolean algebras $(B, +, \cdot, ', 0, 1)$ is at most 4.

The goal of the present article is to present an algorithm for constructing a finitely presented variety (by which is meant one that is finitely based and of finite signature) of arbitrary finite dimension $r \geq 1$.

We recall the basic definitions needed. The class $[V]$ of varieties equivalent, with respect to interpretability, to a given variety V is commonly called an interpretability type (IT for short). If we put $[V] \leq [V']$ whenever V is interpretable in V' we obtain a lattice L_{int}^f in which the finite types (i.e., IT's of finitely presented varieties) form a sublattice L_{int}^f. For a finitely presented variety V, its dimension can be defined to be the greatest number r for which there exist finitely presented varieties V_1, V_2, \ldots, V_r such that L_{int}^f satisfies the following two conditions:

1. $[V_1] \cup [V_2] \cup \ldots \cup [V_r] = [V]$;
2. $\bigvee_{i \neq k} [V_i] < [V]$ for every $k = 1, 2, \ldots, r$.
For any variety \(W \in [V] \), \(\dim(W) = \dim(V) \), and so we also call \(\dim(V) \) the dimension of a type \([V]\).

The collection of all strong Mal'tsev conditions satisfied in a variety \(V \) is referred to as an \textit{SC-theory} of \(V \). A \textit{strong Mal'tsev condition} is a formula of the form

\[
M: (\exists f_1) \ldots (\exists f_k)(\forall z_1) \ldots (\forall z_n) \bigwedge_{i=1}^m t_i = t'_i,
\]

where \(t_i \) and \(t'_i \) are terms in the function symbols \(f_1, \ldots, f_k \) and in the individual variables \(z_1, \ldots, z_n \). We say that \(M \) is satisfied in a given variety \(V \) if there exist terms \(\tilde{f}_1, \ldots, \tilde{f}_k \) in the language of \(V \) such that \(V \models (\forall z_1) \ldots (\forall z_n) \tilde{M} \), where \(\tilde{M} \) is obtained from \(M \) by replacing each function symbol \(f_j \) by a term \(\tilde{f}_j \).

The equalities \(t_i = t'_i \), forming a strong condition \(M \), specify a finitely presented variety \(W_M \), and the fact that \(M \) is satisfied in \(V \) is equivalent to \(W_M \) being interpretable in \(V \). In turn, for each finitely presented variety \(V \), there is a strong Mal'tsev condition \(M \), for which \(W_M = V \).

If \(M_1, \ldots, M_r \) are the strong Mal'tsev conditions corresponding to finitely presented varieties \(V_1, \ldots, V_r \), then condition (1) in the definition of a dimension means that \(\{ M_1, \ldots, M_r \} \) is a generating set for \(SC(V) \); condition (2) shows that the set \(\{ M_1, \ldots, M_r \} \) is independent, that is, for every \(M_k \), there exists a variety \(U_k \) in which all \(M_i, i \neq k \), are satisfied but \(M_k \) is not. As \(U_k \) we can take the coproduct variety

\[
V_1 \coprod \cdots \coprod V_{k-1} \coprod V_{k+1} \coprod \cdots \coprod V_r,
\]

which is a variety presented by disjoint unions \(\bigcup_{i \neq k} \Omega(V_i) \) (of signatures) and \(\bigcup_{i \neq k} \text{Id}(V_i) \) (of defining identities).

1. THE GENERALIZED GUMM THEOREM

Gumm in [3] proved that the strong Mal'tsev condition

\[
(\exists f) f(x, y) = f(y, z)
\]

is satisfied in a certain variety \(V \) iff each involution \(\varphi \) of any algebra \(A \) in \(V \) has a fixed point.

Garcia and Taylor in [4] noticed that Gumm's result will also be valid if stated in a more general form. The route that we follow up to prove the Gumm theorem is as follows.

For every variety \(V \), the following three conditions are equivalent:

(a) the strong Mal'tsev condition

\[
M_n: (\exists f) f(x_1, x_2, \ldots, x_n) = f(x_2, \ldots, x_n, x_1) \quad (n \geq 2)
\]

is satisfied in \(V \);

(b) every automorphism \(\varphi \) of any algebra \(A \) in \(V \), whose \(n \)th degree has a fixed point, has a fixed point itself;

(c) every automorphism \(\varphi \) of order \(n \) of any algebra \(A \) in \(V \) has a fixed point.

In fact, suppose that there exists a term \(\tilde{f} \) in the language of \(V \) such that the identity \(\tilde{f}(x_1, x_2, \ldots, x_n) = \tilde{f}(x_2, \ldots, x_n, x_1) \) is true in \(V \), and \(\varphi \) is an automorphism of an arbitrary algebra \(A \) of \(V \) satisfying the condition

\[
(\exists z \in A) z^{\varphi^n} = z.
\]

For such \(z \), then, the element \(a = \tilde{f}(z, z^{\varphi}, \ldots, z^{\varphi^{n-1}}) \) is fixed with respect to \(\varphi \) since

\[
a^{\varphi} = \tilde{f}(z^{\varphi}, z^{\varphi^2}, \ldots, z^{\varphi^{n-1}}, z) = \tilde{f}(z, z^{\varphi}, \ldots, z^{\varphi^{n-1}}) = a.
\]