GROUPS CONTAINING AN ELEMENT THAT PERMUTES WITH A FINITE NUMBER OF ITS CONJUGATES

V. E. Kislyakov*

We study a group G containing an element g such that $C_G(g) \cap g^G$ is finite. The nonoriented graph Γ is defined as follows. The vertex set of Γ is the conjugacy class g^G. Vertices x and y of the graph G are bridged by an edge iff $x \neq y$ and $xy = yx$. Let Γ_0 be some connected component of G. On a condition that any two vertices of Γ_0 generate a nilpotent group, it is proved that a subgroup generated by the vertex set of Γ_0 is locally nilpotent.

INTRODUCTION

An arbitrary group G, as is known, can be represented as an automorphism group of the graph Γ defined as follows. Let a be an element of G. The vertex set $V(G)$ of Γ is the conjugacy class a^G. The edge set consists of unordered vertex pairs $\{z, y\}$ such that $z \neq y$ and $zy = yz$. Thus, Γ is a nonoriented graph without loops and multiple edges. The group G acts on the set $V(\Gamma)$ by conjugation and is a vertex-transitive group of automorphisms of Γ.

We use this construction to study the situation in which the element a of G permutes with a finite number of its conjugates, that is, the set $C_G(a) \cap a^G$ is finite. Note that the situation that we are envisaging can well be critical, as is, for instance, one encountered in constructing infinite Abelian subgroups in a group.

Thus, if $|C_G(a) \cap a^G| < \infty$, then Γ is a locally finite graph. In what follows, it might be convenient to refer to elements of the conjugacy class a^G as vertices of the graph Γ. In [1], the following question was posed: What is the condition under which the connected components of a locally finite graph Γ are finite? Let Γ_0 be some connected component of Γ and $V(\Gamma_0)$ its vertex set. Since all connected components of Γ are conjugate in G, one connected component being finite implies that all connected components of Γ, too, are finite. In certain cases, the answer to the question posed above can be given by studying into the structure of a subgroup $V(\Gamma_0)$.

In the present article, we deal with a subgroup generated by the vertex set of a connected component in the locally finite graph Γ, subject to some additional finiteness conditions.

Let $H = \langle V(\Gamma_0) \rangle$. The subgroup H is characterized by a number of interesting properties, which are independent of the structure of G. Before embarking on them, we recall certain of the concepts. Subgroups X and Y are called commensurable if the indices $|X : X \cap Y|$ and $|Y : X \cap Y|$ are finite. A subgroup X is said to be FC-embedded in G if, for any element g in G, the index $|X : C_X(g)|$ is finite. The following holds:

Statement 1. (1) if $z \in V(\Gamma_0)$ then $|C_H(z) \cap z^H| < \infty$;

*Supported by the RF State Committee of Higher Education.

Proposition 2. Let G be a group, Γ a locally finite graph, and Γ_0 some connected component of Γ. Then $V(\Gamma_0)$ is a finite set if and only if H is an almost central group.

We pass to state the main result of the present article.

Theorem 3. Let G be a group, Γ a locally finite graph, Γ_0 some connected component of Γ, and $H = \langle V(\Gamma_0) \rangle$. If any two vertices of Γ_0 generate a nilpotent group, then H is a locally nilpotent group.

Theorem 3 implies the following:

Corollary 4. Let G be a group, Γ a locally finite graph, Γ_0 its connected component, and $H = \langle V(\Gamma_0) \rangle$. If any two vertices of Γ_0 generate a finite nilpotent group, then H is a periodic locally nilpotent group.

Proof. By assumption, all elements in the set $V(\Gamma_0)$ have finite order. By Theorem 3, the subgroup H is locally nilpotent. Hence $V(\Gamma_0)$ is contained in the periodic part $T(H)$ of H. Consequently, $H = T(H)$, proving the corollary.

Using Corollary 4, it is not hard to obtain the next:

Corollary 5. Let G be a group, Γ a locally finite graph, Γ_0 its connected component, and $H = \langle V(\Gamma_0) \rangle$. If any two vertices of Γ_0 generate a finite p-group, then H is a locally finite p-group.

The results given above indicate that Theorem 3 still does not allow us to make the conclusion as to whether the connected components of Γ are finite. We are unaware of any example denying this situation, that is, the fact of there being a group for which there exists an infinite connected locally finite graph Γ any two vertices of which would generate a nilpotent group. Our nearest goal is to refine the structure of H. Here we distinguish three cases — where H is torsion free, mixed, or periodic. The situation in which H is torsion free can be thought of as being clearly understood. The following holds:

Proposition 6. Let G be a group, Γ a locally finite graph, Γ_0 some connected component of Γ, and $H = \langle V(\Gamma_0) \rangle$. If any two vertices of Γ_0 generate a nilpotent group, and the subgroup H is torsion free, then H is a finitely generated Abelian group.

By Proposition 2, it follows that $V(\Gamma_0)$ is a finite set, and consequently the connected components of Γ are finite.

The next proposition is of interest for case where H is a mixed group.

Proposition 7. Let G be a group, Γ a locally finite graph, Γ_0 some connected component of Γ, and $H = \langle V(\Gamma_0) \rangle$. If any two vertices of Γ_0 generate a nilpotent group, and the subgroup H is finitely generated, then H is almost central.

At this point, we make some comments on the content of the article. In Secs. 1 and 2, we give auxiliary statements. The results stated in the Introduction are proved in Sec. 3. We omit the proof of Statement 1 by reason of the fact that clause (1) is obvious, and (2)-(6) can be easily derived, for instance, from [1, Lemmas 1.1 and 1.4].