ABELIAN THEOREMS FOR A CLASS OF PROBABILITY DISTRIBUTIONS IN \mathbb{R}^d
AND THEIR APPLICATION

A. Nagaev and A. Zaigraev (Toruń, Poland)
UDC 519.2

A class of multidimensional absolutely continuous distributions is considered. Each of them has a moment-generating function that is finite in a bounded set S and, therefore, generates a family of so-called conjugate or associated distributions. At the focus of our attention are the limiting distributions for this family that appear as the conjugating parameter tends to the boundary of S. As in the one-dimensional case, each such limiting distribution can be obtained as a consequence of an Abelian theorem.

1. Introduction

Let P be a probability measure defined on the Borel sets of \mathbb{R}^d, $d > 1$, and $f(s)$ be its moment-generating function, that is,

$$f(s) = \int_{\mathbb{R}^d} e^{\langle s, x \rangle} P(dx).$$

By $\langle \cdot, \cdot \rangle$ we denote the inner product. Suppose that the set $S = \{s \in \mathbb{R}^d : f(s) < \infty\}$ is not empty and its dimensionality equals d.

The moment-generating function plays a role of great importance in the large-deviation theory. Its basic properties are discussed in [1-5]. The present paper aims to make a contribution toward the further development of this theory. At the focus of our attention is the case when S is, being always convex, bounded.

Let S_0 be the interior of S. If S is bounded and $0 \in S_0$, then S_0 can be represented as

$$S_0 = \{s : s = te, \; 0 \leq t < h(e), \; e \in S^{d-1}\}.$$

It is convenient to call $h(e)$ the shape function of S or simply the shape of S.

Obviously, for $0 < t < h(e)$, $u > 0$ the Markov inequality holds, that is,

$$P(x : \langle e, x \rangle \geq u) \leq f(te) e^{-tu}. \quad (1.1)$$

In what follows, we assume that P is absolutely continuous. Denote its density by $p(x)$.

Further, assume that

$$p(x) = b(x) e^{-\|x\| a(e)}, \quad (1.2)$$

where $e_x = |x|^{-1} x$ and

$$0 < \inf_{e \in S^{d-1}} a(e) \leq \sup_{e \in S^{d-1}} a(e) < \infty.$$

If $p(x)$ is of the form (1.2) and $b(x)$ does not grow too fast as $|x| \to \infty$, then $f(s)$ is finite for some S with $0 \in S_0$. Intuitively, it is $a(e)$ that determines the shape of S. The following proposition justifies this conjecture.

Proposition 1.1. Assume that in (1.2)

$$c_-(1 + |x|)^{-\beta} \leq b(x) \leq c_+(1 + |x|)^{\beta}, \; \beta > 0, \; c_+ > 0. \quad (1.3)$$

Then

1°.

$$h(e) = \inf_{\langle e, \varepsilon \rangle > 0} a(e).$$

2°. For the shape function $h(e)$ of any bounded open convex set S_0 that contains 0, there exists $p(x)$ of the form (1.2) such that the interior of $S = \{s : f(s) < \infty\}$ is S_0. As $a(e)$ in (1.2) one may take

$$a(e) = \sup_{\langle e, \varepsilon \rangle > 0} h(e)(e, \varepsilon).$$

1454 1072-3374/00/9904-1454$25.00 © 2000 Kluwer Academic/Plenum Publishers
The question arises: What can be said about the asymptotic behavior of $f(s)$ as $s \to 0^+$? The answer requires additional restrictions imposed on both $a(e)$ and $b(x)$ in (1.1). Our goal is to establish a multidimensional analog of the following fact.

Let $d = 1$ and

$$p(x) = e^{-s x^2} r_0(x),$$

where $s_+ > 0$ and $r_0(x)$ is of regular variation as $x \to \infty$ with the exponent $\alpha > -1$. When $\tau \downarrow 0$,

$$f(s_+ - \tau) \sim \Gamma(1 + \alpha) \tau^{-1} r_0(\tau^{-1}).$$

This is one of the simplest forms of the so-called Abelian theorem (see, e.g., [12]).

First, we need a relevant multidimensional analog of (1.4) and (1.5). Having it in mind, we introduce the following notion of regular variation that, in essence, coincides with that given in [11, Sec. 5.4.2].

Let $\lambda(e)$ be a nonnegative function defined on S^{d-1}.

Definition 1.2. We say that $b(x)$, $x \in \mathbb{R}^d$, is the function of (α, λ)-regular variation in the cone $C_\lambda = \{x \in \mathbb{R}^d : \lambda(e_x) > 0\}$ if

$$b(x) = r_\alpha(|x|)(\lambda(e_x) + u(x)),$$

where $r_\alpha(t)$ is of regular, in Karamata's sense, variation as $t \to \infty$ with the exponent α while

$$\limsup_{|\epsilon| \to \infty} \epsilon \in C_\lambda |u(\epsilon)| = 0.$$

Denote $\Delta(e) = a(e) - h(e)(e, \epsilon)$. We need the following assumptions:

(A) For a given direction e, the set $\text{argmin}_{\epsilon \in S^{d-1}} (e, \epsilon) > 0 a(e)/(e, \epsilon)$ consists of a single point $e' = e'(e)$.

(B) $\Delta(e)$ in a neighborhood of e' admits the representation

$$\Delta(e) = \frac{1}{2}(e - e')^T \Lambda(e - e') + o(|e - e'|^2).$$

Here Λ is a nonnegative definite matrix, and its rank equals $d - 1$. Furthermore, $\Lambda e' = 0$.

(C) For all sufficiently small δ,

$$\inf_{|\epsilon - e'| > \delta} \Delta(e) = c(\delta) > 0.$$

By λ_j, $j = 1, \ldots, d - 1$, we denote the nonzero eigenvalues of Λ.

Consider the class of densities of the form (1.2), where $b(x)$ is of (α, λ)-regular variation in $(x : |e_x - e| < \delta)$, while in $(x : |e_x - e| > \delta)$ we have

$$b(x) \leq (1 + |x|)^{\beta}$$

for some $\beta > 0$.

Theorem 1.3. Let $p(x)$ be of the form (1.2) with $\alpha > -(d + 1)/2$. Assume that $\lambda(e)$ is continuous for $|e - e'| < \delta$ and (A), (B), and (C) hold. Then as $\tau \downarrow 0$ (cf. (1.5)),

$$f(\langle h(e) - \tau \rangle e) = c_\alpha g(e) \tau^{-(d + 1)/2} r_\alpha(\tau^{-1})(1 + o(1)),$$

where

$$c_\alpha = \Gamma\left(\alpha + \frac{d + 1}{2}\right)(2\pi)^{(d-1)/2}$$

and

$$g(e) = \lambda(e')/(e', e')^{-\alpha} - (d + 1)/2(\lambda_1 \cdots \lambda_{d-1})^{-1/2}.$$

The question arises: How does $f(s)$ behave as s approaches 0^+ alongside some other direction? It turns out that there exists a cone of admissible directions in which the form of the Abelian theorem is, in essence, preserved.

Theorem 1.4. If the conditions of Theorem 1.3 hold, then, for any arbitrarily small $\eta > 0$ and $\tau \downarrow 0$,

$$f(h(e)e - \tau \hat{e}) = c_\alpha g(e, \hat{e}) \tau^{-(d + 1)/2} r_\alpha(\tau^{-1})(1 + o(1))$$

uniformly in $\hat{e}, \langle \hat{e}', \hat{e} \rangle \geq \eta$. Here

$$g(e, \hat{e}) = \lambda(e')(\hat{e}', \hat{e})^{-\alpha} - (d + 1)/2(\lambda_1 \cdots \lambda_{d-1})^{-1/2}.$$