SHARP INEQUALITY FOR DEVIATION OF ROGOZINSKI SUMS AND THE SECOND CONTINUITY MODULUS IN THE SPACE OF PERIODIC CONTINUOUS FUNCTIONS

O. L. Vinogradov

UDC 517.5

The sharp constant (uniformly in n) is found in a Jackson-type inequality involving the Rogozinski sums of order n and the second modulus of continuity with step $\pi/(n+1)$. Bibliography: 6 titles.

§1. INTRODUCTION

1. Notation. Below, the following notation is adopted: C is the space of 2π-periodic continuous real-valued functions f with the norm $\|f\| = \sup_{t \in \mathbb{R}} |f(t)|$; \mathcal{H}_n is the set of trigonometric polynomials of order not exceeding n; $f_\epsilon(t) = f(x + t)$ is the shift of a function f at a number x; $f_e(t) = \frac{f(t) + f(-t)}{2}$ is the even part of a function f; P is a seminorm on a subspace \mathcal{M} of the space C satisfying the conditions

(a) for any $f \in \mathcal{M}$ and $x \in \mathbb{R}$, the function $f_e \in \mathcal{M}$ and the equality $P(f_e) = P(f)$ holds;
(b) there exists a constant M such that $P(f) \leq M\|f\|$ for $f \in \mathcal{M}$;

$\delta^2_{n}(f, x) = f(x + t) - 2f(x) + f(x - t)$ is the second-order central difference for a function f with step t at a point x;

$\omega_2(f, h)_P = \sup_{|t| \leq h} P(\delta^2_{n}(f))$ is the second continuity modulus of a function $f \in \mathcal{M}$ with step h with respect to a seminorm P;

$E_n(f) = \inf_{T \in \mathcal{H}_n} \|f - T\|$ is the best approximation of order n for a function $f \in C$.

We omit the index P if $(\mathcal{M}, P) = (C, \| \cdot \|)$. We apply the symbols $\|f\|$ and $\omega_2(f, h)_P$ to discontinuous functions f in the same sense. We also denote

$$\sum_{k=1}^{m} a_k = \frac{a_0}{2} + \sum_{k=1}^{m} a_k;$$

$$\sum_{k=1}^{m} a_k = \frac{a_0}{2} + \sum_{k=1}^{m-1} a_k + \frac{a_m}{2}; \quad \sum_{k=l}^{m} \varphi(x) = \sum_{k=l}^{m} \varphi\left(\frac{k}{n}\right);$$

if a function φ is not defined, say, at zero, but has the limit there, then $\varphi(0)$ denotes the value $\lim_{x \to 0} \varphi(x)$;

$$R_n(t) = \frac{1}{\pi} \sum_{k=0}^{n} \cos \frac{k\pi}{2(n+1)} \cos kt = \frac{1}{2\pi} \sin \frac{\pi}{2(n+1)} \cos \left(\frac{n+1/2}{n+1} t\right)$$

s the Rogozinski kernel of order n; $\mathcal{R}_n(f, x) = \frac{\pi}{\pi} \int f_x R_n$ is the Rogozinski sum of order n for a function f;

$$S_h(t) = \left\{ \begin{array}{ll}
\frac{1}{h} \left(1 - \frac{|t|}{h}\right) & \text{if } |t| \leq h, \\
0 & \text{if } h \leq |t| \leq \pi.
\end{array} \right.$$
is the kernel of the Steklov function of second order with step \(h \); the Bernoulli numbers \(B_n \) are defined by the equality
\[
\frac{t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!}; \quad B_n(x) = \sum_{k=0}^{n} C_k B_k x^{n-k}
\]
are the Bernoulli polynomials; \(\sin \) is the integral sine; \(\lfloor x \rfloor \) is the integer part of a number \(x \); \(G = \frac{1}{2} \int_0^{\pi/2} \frac{x}{\sin x} \, dx = 0.915965594 \ldots \) is the Catalan constant.

2. Survey of results. The value
\[
D(U, h)_p = \sup_{f \in \mathcal{H}} \frac{P(U(f) - f)}{\omega_2(f, h)_p}
\]
(\(0 \) is considered to be equal to zero), where \(U : \mathcal{H} \to \mathcal{H}, h > 0 \), is usually called the sharp constant in the inequality
\[
P(U(f) - f) \leq K \omega_2(f, h)_p.
\]
If \(U_n : \mathcal{M} \to H_n, \gamma > 0 \), then equalities of the form
\[
P(U_n(f) - f) \leq K \omega_2\left(f, \frac{\gamma \pi}{n+1}\right)_p
\]
are called Jackson-type inequalities (for the second continuity modulus). In this case, one can pose the problem of finding a constant in inequality (1) that is sharp for all \(n \) simultaneously, i.e., the value
\[
\sup_{n \in \mathbb{Z}^+} D(U_n, \gamma \pi/(n+1))^p.
\]
Earlier the author found \([1, 2]\) the constants \(D(U_n, h) \) for some positive operators \(U_n \). As for the constants that are sharp for all \(n \) simultaneously, only one result of this type was known. In 1974, Zhuk \([3]\) established the inequality
\[
\|f - V_n(f)\| \leq 1 \cdot \omega_2\left(f, \frac{\pi}{2(n+1)}\right)
\]
(where \(V_n \) is a linear operator from \(C \) into \(H_n \)). Later Shalaev \([4]\) discovered that the constant 1 is sharp for all \(n \) simultaneously not only in inequality (2) but also in the inequality
\[
E_n(f) \leq 1 \cdot \omega_2\left(f, \frac{\pi}{4(n+1)}\right).
\]
Namely, it was shown that
\[
\sup_{n \in \mathbb{Z}^+} \sup_{f \in \mathcal{C}} \frac{E_n(f)}{\omega_2\left(f, \frac{\pi}{2(n+1)}\right)} = \sup_{n \in \mathbb{Z}^+} \sup_{f \in \mathcal{C}} \frac{\|f - V_n(f)\|}{\omega_2\left(f, \frac{\pi}{2(n+1)}\right)} = 1.
\]
Thus, the sharp constant 1 in inequality (3) is realized by a sequence \(\{V_n\} \) of linear operators.

In the same paper \([3]\), Zhuk applied the same method (adding and subtracting the second Steklov function) to establish the inequality
\[
\|\mathcal{R}_n(f) - f\| \leq \frac{5}{8} \omega_2\left(f, \frac{\pi}{n+1}\right).
\]
Later he transferred these estimates to the case of an arbitrary space \((\mathcal{M}, P)\) (the results mentioned can be also found in the monograph \([5]\)). Set \(D_n = D(\mathcal{R}_n, \frac{\pi}{n+1}) \). Obviously, \(D_0 = 1/2 \). We show in this paper that the constant 5/8 is not sharp in inequality (4). For the values \(D_n \) with \(n \geq 2 \) we establish estimates of the form \(C'_n \leq D_n \leq C_n \) such that \(\lim_{n \to \infty} C'_n = \lim_{n \to \infty} C_n = \sup_{n \geq 2} C_n = D \). The value \(D \) is evaluated. We also give (without a proof) the established value of \(D_1 \). The constant \(D \) is sharp for all \(n \) simultaneously in inequality (4). Our estimates from above for \(D(\mathcal{R}_n, \frac{\pi}{n+1})_p \) hold for any space \((\mathcal{M}, P)\) with the described properties.