DISCRETE SPECTRUM IN SPECTRAL GAPS OF A SELF-ADJOINT OPERATOR UNDER UNBOUNDED PERTURBATIONS

V. A. Sloushch

Let A be a self-adjoint operator, let (α, β) be a gap in the spectrum of A, and let $B = A + V$, where, in general, the perturbation operator V is unbounded. We establish some abstract conditions under which the spectrum of B in (α, β) is discrete; does not accumulate to β; is finite. An estimate of the number of eigenvalues of B in (α, β) is obtained. Bibliography: 3 titles.

1. Let A be a self-adjoint operator in a Hilbert space H. We assume that the spectrum of A contains a (possibly unbounded) gap (α, β). We perturb A to obtain an operator $B = B^* = A + V$, where the perturbation V may be unbounded. Several questions of increasing complexity will be discussed. Specifically, we seek conditions sufficient for the spectrum of B (1) to be discrete; (2) not to accumulate to some endpoint of the gap; (3) to be finite. In the latter case, an estimate will be given for the number of eigenvalues (with multiplicity) of B in (α, β). The discreteness of the spectrum will be ensured by the classical Weyl theorem on compact perturbations or by its generalizations (see, e.g., [2]). However, for some applications this technique is insufficient. First and foremost, we mean the problems in which A is an elliptic differential operator and V is an operator of higher order. Unfortunately, the lack of space forces us to restrict ourselves to general considerations.

The author is grateful to Professor M. Sh. Birman for posing the problem and for his help.

In what follows, $B(H)$ denotes the space of bounded linear operators on H, and $S_\infty(H)$ denotes the space of compact operators on H. For a linear densely defined operator M, by $D(M)$, M^*, $\rho(M)$, and $\sigma(M)$ we denote, respectively, the domain, the adjoint, the resolvent set, and the spectrum of M. For a self-adjoint operator T and a Borel subset δ of the real line, we denote by $E_T(\delta)$ the corresponding spectral projection of T, and by $\pi_T(\delta)$ we denote the dimension of the space $E_T(\delta)H$. If T is lower bounded, its greatest lower bound is denoted by m_T. We shall use the following definition of subordination, generally adopted in the scattering theory (see [1] and [3]).

A self-adjoint operator A is said to be subordinated to a self-adjoint operator B if there exist continuous functions f and g such that $f(x) \geq 1$ and $g(x) \geq 1$ on \mathbb{R}, \(\lim_{x \to -\infty} f(x) = \infty\), and $D(g(B)) \subset D(f(A))$.

2. In this section, we formulate certain results similar to the Weyl theorem concerning the stability of the essential spectrum $\sigma_e(\cdot)$. These results are convenient in the case of perturbations that are not relatively compact. Below, A and B stand for self-adjoint operators on H.

Theorem 1. If A is subordinated to B and

$$E_B(-a, a)(B - A) E_A(-a, a) \in S_\infty(H)$$

for any $a > 0$, then $\sigma_e(B) \subset \sigma_e(A)$.

Remark. Let $a > 0$ and let $z \in \rho(A) \cap \rho(B)$. Then inclusion (1) is equivalent to the relation

$$E_B(-a, a) ((B - zI)^{-1} - (A - zI)^{-1}) E_A(-a, a) \in S_\infty(H).$$

Theorem 2. If A is subordinated to B, $z \in \rho(A) \cap \rho(B)$, and

$$((B - zI)^{-1} - (A - zI)^{-1}) E_A(-a, a) \in S_\infty(H)$$

for any $a > 0$, then $\sigma_e(B) = \sigma_e(A)$.

3190 1072-3374/00/1013-3190 $25.00 © 2000 Kluwer Academic/Plenum Publishers
Corollary. If A is subordinated to B and

$$E_A(-a, a) H \subset D(B); \quad (B - A) E_A(-a, a) \in S_\infty(H)$$

for any $a > 0$, then $\sigma_e(B) = \sigma_e(A)$.

Theorem 3. Let A, B be lower bounded, let $B > A$ (in the sense of quadratic forms), and let $0 < m_A < \alpha$. If

$$(B^{-1} - A^{-1}) E_A[m_A, \alpha] \in S_\infty(H),$$

then $\sigma_e(B) \cap (\alpha, \beta) = \emptyset$ and $(\beta - \varepsilon, \beta) \subset \rho(B)$ for $\varepsilon > 0$.

3. In what follows, it is assumed that A is a positive-definite operator ($m_A > 0$) and that the perturbation is nonnegative. More precisely, let a be the sesquilinear form of A, and let $d[a] = D(A^{1/2})$ be the domain of a. Let $D_0 \subset d[a]$ be a linear subspace dense in H, and let W_0 be a subtended linear operator with $D(W_0) = D_0$. We denote by W the closure of W_0 and introduce the form

$$b_0(t)[u, v] = a[u, v] + t(W_0u, W_0v), \quad u, v \in D_0, \quad t > 0.$$

This form admits a closure $b(t)$, and $d[b(t)]$ does not depend on $t > 0$,

$$\widehat{\Delta} := d[b(t)] \subset d[a] \cap D(W),$$

$$b(t)[u, v] = a[u, v] + t(Wu, Wv), \quad u, v \in \widehat{\Delta}, \quad t > 0.$$

Let $B(t)$ be the self-adjoint operator on H generated by the form $b(t)$. Now we assume that $0 < m_A < \alpha$ and that

$$E_A[m_A, \alpha] H \subset \widehat{\Delta},$$

$$WE_A[m_A, \alpha] \in S_\infty(H).$$

Theorem 4. Conditions (2), (3) imply that the assumptions of Theorem 3 are satisfied by the couple $A, B(t)$; therefore, $\sigma_e(B(t)) \cap (\alpha, \beta) = \emptyset$, and for some $\varepsilon := \varepsilon(t) > 0$ we have $(\beta - \varepsilon, \beta) \subset \rho(B(t))$.

For brevity, we denote $E_1 = E_A[m_A, \alpha], E_2 = E_A[\beta, +\infty), H_k = E_k H, k = 1, 2$. Next, we assume that

$$WE_1 \in B(H)$$

and introduce the notation

$$A_1 = A|_{H_1}, \quad Q_1 = (WE_1)^*(WE_1)|_{H_1}, \quad \chi(\lambda) = -WE_1(A_1 - \lambda I_1)^{-1}(WE_1)^*, \quad \lambda > \alpha.$$

Theorem 5. If conditions (2), (3) are fulfilled, then

$$\pi_{B(t)}(\alpha, \beta) \leq \pi_{A_1} + tQ_1(\alpha, +\infty), \quad t > 0.$$

The operator-valued function (5) is monotone nonincreasing. Assume that it admits a compact majorant,

$$\chi(\lambda) \leq \chi_0 \in S_\infty(H), \quad \lambda > \alpha.$$

Combining (6) with the Birman–Schwinger principle, we arrive at the following statement.