Asymmetric Decompositions of Abelian Groups

T. O. Banach and I. V. Protasov

ABSTRACT. A subset \(A \) of an Abelian group \(G \) is said to be asymmetric if \(g + S \not\subseteq A \) for any element \(g \in G \) and any infinite symmetric subset \(S \subseteq G \) \((S = -S) \). The minimal cardinality of a decomposition of the group \(G \) into asymmetric sets is denoted by \(\nu(G) \). For any Abelian group \(G \), the cardinal number \(\nu(G) \) is expressed via the following cardinal invariants: the free rank, the 2-rank, and the cardinality of the group. In particular, \(\nu(\mathbb{Z}^n) = n + 1 \), \(\nu(\mathbb{Q}^n) = n + 2 \), and \(\nu(\mathbb{R}) = \aleph_0 \).

KEY WORDS: Abelian group, asymmetric set, asymmetric decomposition, free rank, 2-rank.

A subset \(A \) of an Abelian group \(G \) is said to be asymmetric if \(g + S \not\subseteq A \) for any element \(g \in G \) and any infinite symmetric subset \(S \subseteq G \), \(S = -S \) (in other words, \(A \) contains no infinite subset symmetric with respect to some point).

For any Abelian group \(G \), define \(\nu(G) \) as the minimal cardinality of a decomposition of the group \(G \) into asymmetric sets. In the chromatic terminology, \(\nu(G) \) is the minimal number of colors that are needed for an asymmetric coloring of the group \(G \). It is clear that \(\nu(G) = 1 \) if and only if the group \(G \) is finite.

The number \(\nu(G) \) was introduced by Protasov in [1], where the groups \(G \) with \(\nu(G) = 2 \) were also characterized and the problem of calculating the cardinal \(\nu(G) \) for the specific groups \(\mathbb{Z}^n \), \(\mathbb{Q}^n \), and \(\mathbb{R} \) was posed.

In this note we calculate the invariant \(\nu(G) \) for all Abelian groups \(G \) via the following known cardinal invariants: the free rank \(r_0(G) \), the 2-rank \(r_2(G) \), and the cardinality \(|G| \) of the group \(G \) (for the definitions of the ranks \(r_0(G) \) and \(r_p(G) \) for all primes \(p \), see [2, p. 103 of the Russian translation]). Assuming that all groups under consideration are Abelian, we first present the main results of the paper.

Theorem 1. If \(G \) is a finitely generated group, then \(\nu(G) = r_0(G) + 1 \).

Theorem 2. If \(G \) is a countable infinitely generated group and the numbers \(r_0(G) \) and \(r_2(G) \) are finite, then \(\nu(G) = r_0(G) + 2 \).

Theorem 3. If \(G \) is a countable group and at least one of the numbers \(r_0(G) \) and \(r_2(G) \) is infinite, then \(\nu(G) = \aleph_0 \).

Theorem 4. If \(G \) is an uncountable group, then \(\nu(G) = \max\{r_2(G), \log |G|\} \), where we use the notation \(\log |G| = \min\{\gamma : 2^\gamma \geq |G|\} \).

It follows from Theorems 1 and 2 that \(\nu(\mathbb{Z}^n) = n + 1 \) and \(\nu(\mathbb{Q}^n) = n + 2 \) for any positive integer \(n \in \mathbb{N} \). By Theorem 4, \(\nu(\mathbb{R}) = \aleph_0 \).

To prove Theorems 1 and 2, we use some nontrivial results from algebraic topology. Theorem 3 is a simple consequence of Theorem 1, and Theorem 4 is proved by techniques from the combinatorial theory of sets. The structure of the present note is such that the proofs of the main results are taken from a sequence of 16 lemmas.

Let us first somewhat modify the definition of the invariant \(\nu(G) \) and introduce a new invariant \(\tilde{\nu}(G) \). Note that a subset \(A \) of a group \(G \) is asymmetric if and only if the intersection \(A \cap (2g - A) \) is finite for any \(g \in G \). A subset \(A \subseteq G \) is said to be absolutely asymmetric if the intersection \(A \cap (g - A) \) is finite for any \(g \in G \). Let us define the cardinal \(\tilde{\nu}(G) \) as the minimal cardinality of a decomposition of the group \(G \) into absolutely asymmetric subsets. Since any absolutely asymmetric set is asymmetric, it follows that \(\nu(G) \leq \tilde{\nu}(G) \leq |G| \).
The next assertion immediately follows from the definitions of the invariants \(\nu \) and \(\tilde{\nu} \).

Lemma 1. If \(H \) is a subgroup of a group \(G \), then \(\nu(H) \leq \nu(G) \) and \(\tilde{\nu}(H) \leq \tilde{\nu}(G) \).

Lemma 2. If \(H \) is a subgroup of a group \(G \), then \(\tilde{\nu}(G) \leq \tilde{\nu}(H) \times \tilde{\nu}(G/H) \).

Proof. Let us choose decompositions \(H = \bigcup_{\alpha \in \tilde{\nu}(H)} H_\alpha \) and \(G/H = \bigcup_{\beta \in \tilde{\nu}(G/H)} F_\beta \) of the groups \(H \) and \(G/H \) into absolutely asymmetric subsets. Let \(s : G/H \to G \) be an arbitrary section of the quotient mapping \(\pi : G \to G/H \) (i.e., \(\pi \circ s(g) = g \) for any \(g \in G/H \)).

For any pair \((\alpha, \beta) \in \tilde{\nu}(H) \times \tilde{\nu}(G/H) \), we set \(G_{\alpha,\beta} = H_\alpha + s(F_\beta) \). We can readily see that

\[
G = \bigcup_{(\alpha,\beta) \in \tilde{\nu}(H) \times \tilde{\nu}(G/H)} G_{\alpha,\beta}.
\]

Let us show that any subset \(G_{\alpha,\beta} \) is absolutely asymmetric. To this end, we choose \(g \in G \). Since the subset \(F_\beta \subset G/H \) is absolutely asymmetric, it follows that the intersection \(F_\beta \cap (\pi(g) - F_\beta) \) is finite. Note that \(g - s(\pi(g) - f) - s(f) \in H \) for any \(f \in G/H \). Then, since the set \(H_\alpha \subset H \) is absolutely asymmetric, it follows that the subset

\[
B = \bigcup_{f \in F_\beta \cap (\pi(g) - F_\beta)} H_\alpha \cap (g - s(\pi(g) - f) - s(f) - H_\alpha)
\]

is finite.

We claim that

\[
G_{\alpha,\beta} \cap (g - G_{\alpha,\beta}) \subset B + s(F_\beta \cap (\pi(g) - F_\beta)).
\]

Indeed, for any \(a \in G_{\alpha,\beta} \cap (g - G_{\alpha,\beta}) \), there is an element \(b \in G_{\alpha,\beta} \) such that \(a = g - b \). By the definition of the subset \(G_{\alpha,\beta} \), we have \(a = h_\alpha + s(f_a) \) and \(b = h_\beta + s(f_b) \) for some \(h_\alpha, h_\beta \in H_\alpha \) and \(f_a, f_b \in F_\beta \). Hence, \(h_\alpha + s(f_a) = g - h_\beta - s(f_b) \). Applying the quotient mapping \(\pi \) to this relation, we obtain \(a = \pi(g) - f_b \), i.e., \(f_a \in F_\beta \cap (\pi(g) - F_\beta) \). Let us show that \(h_\alpha \in B \), which will prove (2). Indeed, \(a = h_\alpha + s(f_a) = g - b = g - h_\beta - s(f_b) \). Since \(f_b = \pi(g) - f_a \), it follows that \(h_\alpha = g - s(\pi(g) - f_a) - s(f_a) - h_\beta \), and hence \(h_\alpha \in B \).

It follows from (2) that the set \(G_{\alpha,\beta} \cap (g - G_{\alpha,\beta}) \) is finite. Thus, \(\tilde{\nu}(G) \leq \tilde{\nu}(H) \times \tilde{\nu}(G/H) \). \(\square \)

Lemma 3. If \(H \) is a subgroup of a countable group \(G \), then \(\tilde{\nu}(G) \leq \tilde{\nu}(H) + \tilde{\nu}(G/H) - 1 \).

Proof. Without loss of generality, we may assume that the numbers \(\tilde{\nu}(H) \) and \(\tilde{\nu}(G/H) \) are finite. Moreover, we may assume that the quotient group \(G/H \) is infinite (otherwise \(\tilde{\nu}(G/H) = 1 \), and we have \(\tilde{\nu}(G) \leq \tilde{\nu}(H) = \tilde{\nu}(H) + \tilde{\nu}(G/H) - 1 \) by Lemma 2).

Let \(G = \{g_n : n \in \mathbb{N}\} \) and \(\{n(k)\}_{k \in \mathbb{N}} \) be a number sequence such that \(G = \bigcup_{k=1}^{\infty} g_{n(k)} + H \) and \(g_{n(i)} + H \neq g_{n(j)} + H \) for \(i \neq j \). Set \(p = \tilde{\nu}(H) \) and \(q = \tilde{\nu}(G/H) \) and choose decompositions \(H = \bigcup_{\alpha=1}^{p} H_\alpha \) and \(G/H = \bigcup_{\beta=1}^{q} F_\beta \) of the groups \(H \) and \(G/H \) into absolutely asymmetric subsets.

For any \(\alpha \in \{1, \ldots, p-1\} \) and \(n \in \mathbb{N} \) we set

\[
A_\alpha(n) = \bigcup_{i,j,k \leq n} (g_{n(i)} + H_\alpha) \cap (g_k - g_{n(j)} - H_\alpha).
\]

Since \(H_\alpha \) is absolutely asymmetric, it follows that the set \(A_\alpha(n) \) is finite.

Now let us construct a decomposition \(G = \bigcup_{\gamma=1}^{p+q-1} G_\gamma \) of the group \(G \) into absolutely asymmetric subsets. For any \(\gamma \in \{1, \ldots, p-1\} \) we set

\[
G_\gamma = \bigcup_{k=1}^{\infty} (g_{n(k)} + H_\gamma) \setminus A_\gamma(k).
\]