Degrees of Irreducible Characters of the Suzuki 2-Groups

I. A. Sagirov

ABSTRACT. The degrees of the irreducible characters of the Suzuki 2-groups \(A(m, \theta) \) are described. Assume that the order of an automorphism \(\theta \) of the field \(GF(2^m) \) is \(k > 1 \), \(G = A(m, \theta) \), and \(\text{cd}(G) \) is the set of degrees of the irreducible characters of \(G \). If \(k \) is odd, then \(\text{cd}(G) = \{1, 2^{(m-n)/2}\} \), and if \(k = 2 \), then \(\text{cd}(G) = \{1, 2^{m/2}\} \). If \(k \) is even and \(k \neq 2 \), then \(\text{cd}(G) = \{1, 2^{m/2}, 2^{m/2-1/k}\} \), and the group \(G \) has \((2^m - 1)2^{m/k}/(2^{m/k} + 1) \) characters of degree \(2^{m/2} \) and \((2^m - 1)2^{m/k}/(2^{m/k} + 1) \) characters of degree \(2^{m/2-1/k} \).

KEY WORDS: Suzuki 2-group, irreducible character, degree of a group character, nonprincipal character, Frattini subgroup, extraspecial group, semi-Abelian group.

§1. Introduction

Let \(G \) be a group, let \(\text{Irr}(G) \) be the set of all its irreducible characters, let \(\text{Irr}_1(G) \) be the set of all its nonlinear irreducible characters, let \(\text{cd}(G) \) be the set of degrees of the irreducible characters, let \(\text{Cl}(G) \) be the set of conjugacy classes of \(G \), and let \(k(G) = |\text{Cl}(G)| \).

The Suzuki 2-groups were first introduced by Higman, and they are studied in detail in [1, Chap. VIII]. Let us recall their definition. Consider a finite field \(GF(q) \), where \(q = 2^m \) and \(m > 1 \), and an automorphism \(\theta \) of this field of order \(k \) for some divisor \(k > 1 \) of \(m \). Write \(n = m/k \). The Suzuki 2-group \(A(m, \theta) \) is defined as the set of ordered pairs of elements of \(GF(q) \) with the operation \((a, b)(c, d) = (a + c, b + d + \theta(c)) \) for any \(a, b, c, d \in GF(q) \). In the present paper, the description of the degrees of the irreducible characters of the groups \(A(m, \theta) \) is obtained. Namely, the following assertion holds.

Theorem. If \(G = A(m, \theta) \) is the Suzuki 2-group of order \(q^2 \), where \(m > 1 \) is an integer, \(q = 2^m \), and \(\theta \) is an automorphism of the field \(GF(q) \) of order \(k > 1 \) (\(m/k = n \)), then one of the following assertions holds:

1) if \(k \) is odd, then \(\text{cd}(G) = \{1, 2^{(m-n)/2}\} \),
2) if \(k = 2 \), then \(\text{cd}(G) = \{1, 2^{m/2}\} \),
3) if \(k \) is even and \(k \neq 2 \), then \(\text{cd}(G) = \{1, 2^{m/2}, 2^{m/2-1/k}\} \), and \(G \) has \((2^m - 1)2^{m/k}/(2^{m/k} + 1) \) characters of degree \(2^{m/2} \) and \((2^m - 1)2^{m/k}/(2^{m/k} + 1) \) characters of degree \(2^{m/2-1/k} \).

For the case in which the order of the automorphism \(\theta \) is odd, the corresponding result is known [2]. However, for the completeness of our exposition, we include a proof of this fact.

§2. Auxiliary results

Everywhere below we assume that \(G \) is the Suzuki 2-group \(A(m, \theta) \), \(\theta \) is an automorphism of order \(k \) of the field \(GF(q) \), \(q = 2^m \), and \(m/k = n \).

Lemma 2.1. \(|G'| \geq 2^{m-n} \).

Proof. The commutator relation \([(a, b), (c, d)] = (0, a\theta(c) + c\theta(a)) \) holds for arbitrary \(a, b, c, d \in GF(q) \). If \(c = 1 \), then \([(a, b), (1, d)] = (0, a + \theta(a)) \), and the number of distinct commutators of this form is \(2^m/\text{u} \), where \(\text{u} = |\{a \in GF(q) | a = \theta(a)\}| \). Therefore, \(\text{u} \) is the number of fixed points of the automorphism \(\theta \), and hence \(\text{u} = 2^n \). Thus, \(|G'| \geq 2^{m-n} \). \(\square \)

Lemma 2.2. The number of conjugacy classes of the group \(G \) is \(2^{m+n} + 2^m - 2^n \).
Proof. Obviously, $Z(G) = \{(0, b) \mid b \in GF(q)\}$ and $|Z(G)| = 2^m$. For an arbitrary element $(a, b) \in G$, $a \neq 0$, the relation $(c, d) \in C_G(a, b)$ holds if and only if $[(a, b), (c, d)] = 1$, i.e., we have $a\theta(c) + c\theta(a) = 0$. The latter means that $ca^{-1} = \theta(ca^{-1})$. Since the set of fixed points of θ is isomorphic to $GF(2^n)$, it follows that $|C_G(a, b)| = 2^{m+n}$, and hence the conjugacy class of an arbitrary element of $G \setminus Z(G)$ contains 2^{m-n} elements. Let r be the number of noncentral G-classes. Then $r2^{m-n} + 2^m = |G|$. This yields $r = 2^{m+n} - 2^n$ and $k(G) = 2^{m+n} + 2^m - 2^n$. □

Lemma 2.3. The mapping $\varphi_\lambda(a, b) = (\lambda a, \lambda \theta(\lambda)b)$, where $\lambda \in GF(q)^*$, is an automorphism of the group G.

Proof. We write $\mu = \lambda \theta(\lambda)$. Then

$$\varphi_\lambda(a, b) = (\lambda a, \mu b), \quad \varphi_\lambda(c, d) = (\lambda c, \mu d),$$

$$\varphi_\lambda((a, b)(c, d)) = \varphi_\lambda(a + c, b + d + \theta(a)) = (\lambda(a + c), \mu(b + d + \theta(a))).$$

On the other hand,

$$\varphi_\lambda(a, b)\varphi_\lambda(c, d) = (\lambda a, \mu b)(\lambda c, \mu d) = (\lambda a + \lambda c, \mu b + \mu d + \lambda c\theta(\lambda)a)$$

$$= (\lambda(a + c), \mu b + \mu d + \mu c\theta(a)) = \varphi_\lambda((a, b)(c, d)).$$

Therefore, φ_λ is an endomorphism of the group G, and $\varphi_\lambda(a, b) = (0, 0)$ only if $(a, b) = (0, 0)$, which means that φ_λ is an automorphism. □

Since θ is an automorphism of the field $GF(q)$ of order k, it follows that for any $x \in GF(q)$ we have $\theta(x) = x^{2^n}$ for some t, $(t, k) = 1$. Let us fix this number t.

Lemma 2.4. If $m = nk$ is a product of two positive integers and if $(t, k) = 1$ for the above number t, then

$$(2^m - 1, 2^{nt} + 1) = \begin{cases} 1 & \text{for odd } k, \\ 2^n + 1 & \text{for even } k. \end{cases}$$

Proof. As is known, $(p^m - 1, p^n - 1) = p^{(m,n)} - 1$ for any $m, n \in \mathbb{N}$ and any prime p. Therefore,

$$(2^m - 1, 2^{nt} - 1) = \begin{cases} 2^n - 1 & \text{for odd } k, \\ 2^{2n} - 1 & \text{for even } k. \end{cases}$$

Obviously, $(2^m - 1, 2^{nt} + 1) \mid (2^m - 1, 2^{nt} - 1)$.

Note that $(2^{nt} + 1, 2^n - 1) = 1$. Indeed, if $p \mid (2^{nt} + 1, 2^n - 1)$ and p is a prime, then $2^n \equiv 1 \pmod{p}$, and thus $2^{nt} \equiv 1^t \pmod{p}$. We have arrived at a contradiction because $2^{nt} \equiv -1 \pmod{p}$. Therefore, $(2^m - 1, 2^{nt} + 1) = 1$ for odd k. Since $2^{2n} - 1 = (2^n - 1)(2^n + 1)$, $(2^{nt} + 1, 2^n - 1) = 1$, and $2^n + 1 \mid 2^{nt} + 1$, it follows that $(2^m - 1, 2^{nt} + 1) = 2^n + 1$ for even k. □

Lemma 2.5. Let λ be a primitive element of the field $GF(q)$. The length of the orbit of φ_λ on $G \setminus Z(G)$ is equal to 2^{m-1}. The length of the orbit of φ_λ on $Z(G)^\#$ is equal to $2^{m-1} - 1$ for odd k and to $(2^{m-1} - 1)/(2^n + 1)$ for even k.

Proof. For any $(a, b) \in G$ we have $\varphi_\lambda^i(a, b) = (\lambda^i, (\lambda \theta(\lambda))^ib)$. Let $a \neq 0$. In this case, $\varphi_\lambda^i(a, b) = (a, b)$ if and only if $(\lambda^i - 1)a = 0$, which is impossible for $0 < i < 2^m - 1$.

Let $a = 0$. In this case, $\varphi_\lambda^i(0, b) = (0, (\lambda \theta(\lambda))^ib) = (0, b)$ only if $(\lambda \theta(\lambda))^i = 1$. This holds for $\lambda(2^m+1)i = 1$ because $\theta(\lambda) = \lambda^{2^m}$. By Lemma 2.4, for odd k this yields $2^m - 1 \mid i$, and all elements of $Z(G)^\#$ are conjugate under the action of φ_λ. We have $(2^m - 1)/(2^n + 1) \mid i$ for even k, and the length of the φ_λ-orbit of the element $(0, b)$ is equal to $(2^m - 1)/(2^n + 1)$. □

Corollary. If $k > 1$ is odd, then $G' = Z(G)$.

204