On a Certain Property of the Burkill SCP-Integral

V. A. Sklyarenko

ABSTRACT. We establish a necessary condition for the SCP-integrability of a function and use it to construct an example of a function possessing a continuous SCP-majorant and SCP-minorant on a closed interval, but nonintegrable over this interval in the sense of the SCP-integral.

KEY WORDS: generalized integral of Perron type, Burkill SCP-integral, necessary condition for SCP-integrability, SCP-majorant, SCP-minorant, Perron integral.

The following property of the Perron integral is well known: a measurable function f possessing at least one continuous P-minorant and at least one continuous P-majorant on the closed interval $[a, b]$ is necessarily P-integrable on $[a, b]$ (see [1, p. 365 of the Russian translation], as well as [2]). This result was later extended to some other generalized integrals of Perron type (see, for example, [3]). On the other hand, for the Perron binary integral the existence of a continuous majorant and minorant of a function does not guarantee its integrability (see [4]). Here we show that for the Burkill SCP-integral (see [5]), which allows one to consider any trigonometric series everywhere converging to a finite sum as the Fourier series of its sum, a similar example can also be constructed.

Let us present the necessary definitions and notation.

Suppose that $B \subset [a, b]$, $|B| = b - a$, $a, b \in B$. A P-integrable function M is called an SCP-majorant with basis B for f on $[a, b]$ if

1) $M(a) = 0$;
2) M is SC-continuous for all $z \in (a, b)$, i.e.,
\[
\lim_{h \to 0} \frac{1}{h} \left((P) \int_{z}^{z+h} M \, dt - (P) \int_{z-h}^{z} M \, dt \right) = 0, \quad z \in (a, b);
\]
3) M is C-continuous for all $z \in B$, i.e.,
\[
\lim_{h \to 0} \frac{1}{h} (P) \int_{z}^{z+h} M \, dt = M(z), \quad z \in B;
\]
4) $SCP M(z) \geq f(z)$ almost everywhere on (a, b), where
\[
SCP M(z) = \lim_{h \to 0} \frac{1}{h^2} \left((P) \int_{z}^{z+h} M \, dt - (P) \int_{z-h}^{z} M \, dt \right);
\]
5) $SCP M(z) > -\infty$ everywhere on (a, b) except, maybe, for a countable set E.

An SCP-minorant with basis B is defined similarly.

A function f is called SCP-integrable on $[a, b]$ with basis B if for its SCP-majorants M and SCP-minorants m with basis B the following relation is valid:
\[
\sup m(b) = \inf M(b) = \Phi(b).
\]

Moreover, we assume that
\[
(SCP) \int_{a}^{b} f \, dx = \Phi(b).
\]
A function f that is SCP-integrable with basis B on $[a, b]$, is SCP-integrable with the basis $B \cap [a, x]$ on $[a, x]$ for $x \in B$. The function $\Phi(x)$, $x \in B$, is naturally called SCP-primitive for f on $[a, b]$.

Since an SCP-integrable function is finite almost everywhere on $[a, b]$ and a variation of this function on the set of measure zero does not affect its SCP-integrability or its SCP-primitive function, we may assume that $f(x)$ is everywhere finite.

Repeating the proof of Lemma 2 from [6] for SCP-integrals, we find that we can assume, without loss of generality, that conditions 4) and 5) in the definitions of the majorant and the minorant are satisfied everywhere.

Lemma. Suppose that Φ is an SCP-primitive function for f on the closed interval $[a, b]$. Then for any $\varepsilon > 0$ the interval (a, b) can be expressed as the union of a countable number of closed (on (a, b)) sets Q_k possessing at most two common points for different k such that for $x \in Q_k$, $x \pm h \in [a, b]$ the following inequality holds:

$$
(P) \int_0^h (\Phi(x + t) - \Phi(x - t)) \, dt \leq \int_0^h (\sigma_k(x + t) - \sigma_k(x - t)) \, dt,
$$

where the σ_k are nondecreasing continuous functions on $[a, b]$; moreover, if s_k is the singular part of σ_k, then

$$
\sum_{k=1}^{\infty} (s_k(b) - s_k(a)) < \varepsilon.
$$

Proof. Repeating the proof of Lemma 2 from [7], in the case of an SCP-integral we find that for an arbitrary $\varepsilon > 0$ the interval (a, b) can be expressed as the union of closed (on (a, b)) sets P_k, $k = 1, 2, \ldots, P_{k+1} \supset P_k$, so that for $x \in P_k$ inequality (1) holds with $\widehat{\sigma}_k(z) = kx + \sigma(z)$, where σ is a nondecreasing continuous function on $[a, b]$ for which $0 \leq \sigma(b) - \sigma(a) < \varepsilon$. The difference of the sets $P_{k+1} \setminus P_k$ can be expressed as the union of at most a countable number of sets $Q_{kn} = u_n \cap (P_{k+1} \setminus P_k)$, where the $\{u_n\}$ are the intervals composing the set $(a, b) \setminus P_k$; moreover, Q_{kn} differs from Q_{kn} by at most two points. For different k and n, the sets Q_{kn} ($Q_{11} = P_1$), obviously, do not overlap. In the set $\{Q_{kn}\}_{k,n=1}^{\infty}$, let us introduce the single numbering $\{Q_{kn}\}_{k,n=1}^{\infty} = \{Q_k\}_{k=1}^{\infty}$. For $x \in Q_k$, inequality (1) is valid with a nondecreasing continuous function $\widehat{\sigma}_k(z) = c(k) x + \sigma(x)$.

Suppose that $\{(\alpha_j, \beta_j)\}_{j=1}^{\infty}$ is the set of intervals of the set $(a, b) \setminus Q_k$,

$$
\omega_j(\delta) = \sup\{[\overline{\sigma}_k(x) - \overline{\sigma}_k(y)] : x, y \in (\alpha_j, \beta_j), \ |x - y| < \delta \}
$$

is the modulus of continuity of the function $\overline{\sigma}_k$ on (α_j, β_j), $\overline{\omega}_j(\delta)$ is a convex (up) function satisfying the inequality $0 \leq \omega_j(\delta) \leq \overline{\omega}_j(\delta) \leq 2\omega_j(\delta)$ for $0 \leq \delta \leq \beta_j - \alpha_j$ (see [7, Stechkin’s lemma]). The function

$$
\overline{\omega}_j(z) = \begin{cases} 0 & \text{for } a \leq z < \alpha_j, \\ \overline{\omega}_j(z - \alpha_j) + \overline{\omega}_j(\beta_j - \alpha_j) - \overline{\omega}_j(\beta_j - z) & \text{for } \alpha_j \leq z < \beta_j, \\ 2\overline{\omega}_j(\beta_j - \alpha_j) & \text{for } \beta_j \leq z \leq b,
\end{cases}
$$

does not decay, is absolutely continuous, and we have $\overline{\omega}_j(\alpha_j) = 0$, $\overline{\omega}_j(b) \leq 4(\overline{\sigma}(\beta_j) - \overline{\sigma}(\alpha_j))$.

Let us define the increasing continuous function

$$
\sigma_k(z) = V\sigma([a, z] \cap Q_k) + c(k)[a, z] \cap Q_k] + \sum_{j=1}^{\infty} \overline{\omega}_j(z),
$$

where $V\Psi(E)$ is a function of the set $E \subset [a, b]$ with generating function $V^*\Psi$ (Ψ is a continuous function of finite variation).

Next, we verify that the sequence of sets $\{Q_k\}_{k=1}^{\infty}$ and monotone functions $\{\sigma_k(z)\}_{k=1}^{\infty}$ satisfies the assumptions of the lemma.