Arithmetical Properties of the Values of E-Functions

A. B. Shidlovskii

ABSTRACT. For a collection of E-functions which is algebraically dependent over the field of rational functions, theorems on the algebraic independence of values of subcollections at algebraic points are proved.

Key words: E-function, field of rational functions, algebraic dependence, algebraic independence.

For a collection of E-functions which is algebraically dependent over $\mathbb{C}(z)$, theorems on the algebraic independence of values of subcollections of the given collection at algebraic points are proved. For the history of the problem, see [1].

Everywhere below we assume that
\begin{equation}
 f_1(z), \ldots, f_m(z)
\end{equation}
is a set of E-functions that forms a solution of a system of linear homogeneous differential equations of the form
\begin{equation}
 y_k' = \sum_{i=1}^{m} Q_{k,i} y_i, \quad k = 1, \ldots, m, \quad m \geq 2, \quad Q_{k,i} \in \mathbb{C}(z),
\end{equation}
or of the system
\begin{equation}
 y_k' = Q_{k,0} + \sum_{i=1}^{m} Q_{k,i} y_i, \quad k = 1, \ldots, m, \quad m \geq 2.
\end{equation}

Denote by $T(z) \in \mathbb{C}[z]$ the least common denominator of all functions $Q_{k,i}$ in system (2) or (3), respectively. Furthermore, Let $\xi \in \mathbb{A}$ be such that $\xi T(\xi) \neq 0$, where \mathbb{A} is the field of all algebraic numbers over \mathbb{Q}.

As is known, the numbers
\begin{equation}
 f_1(\xi), \ldots, f_m(\xi)
\end{equation}
are homogeneously algebraically independent (algebraically independent) if and only if the functions (1) are homogeneously algebraically independent (algebraically independent) over $\mathbb{C}(z)$, and also that the degrees of homogeneous transcendence (the degrees of transcendence, respectively) of these numbers over $\mathbb{C}(z)$ coincide with those of the functions (1) over \mathbb{A}.

We assume now that the degree of homogeneous transcendence (the degree of transcendence) of the functions (1) over $\mathbb{C}(z)$ is equal to l, $1 \leq l < m$, and the functions
\begin{equation}
 f_1(z), \ldots, f_l(z)
\end{equation}
are homogeneously algebraically independent (algebraically independent, respectively) over $\mathbb{C}(z)$.

As is known, in this case the numbers
\begin{equation}
 f_1(\xi), \ldots, f_l(\xi)
\end{equation}
are homogeneously algebraically independent (algebraically independent, respectively) for any $\xi \in \mathbb{A}$ except for finitely many numbers of this form. Certain theorems on the algebraic independence of the numbers (6) are established for some subclasses of E-functions and for exactly specified points ξ in [1].

Original article submitted January 12, 1999.
In what follows, we assume that, in the polynomials belonging to \(\mathbb{C}[z, z_1, \ldots, z_m] \) and \(\mathbb{C}[z_1, \ldots, z_m] \), the terms are ordered lexicographically with respect to the degrees of \(z_m, \ldots, z_1 \) and their coefficients belong to \(\mathbb{C}[z] \) and \(\mathbb{C} \), respectively.

Consider a collection of homogeneous (arbitrary, respectively) minimal equations of the functions (1) over \(\mathbb{C}[z] \) (see [2] or [1, Chap. 4, §10]). Let \(\Lambda \) be the set of zeros of all their leading coefficients.

Let \(K \) be an arbitrary chosen algebraic field over \(\mathbb{Q} \) that contains the coefficients of the series in powers of \(z \) of all functions (1), let \(\xi \in \Lambda \) be a number such that \(\xi T(\xi) \neq 0 \), and let \(h = [K : \mathbb{Q}] \). Further, let \(K_1, \ldots, K_h \) be the algebraic fields conjugate to \(K \), let \(\xi_i \in K_i \), \(i = 1, \ldots, h \), be the numbers conjugate to \(\xi \), let \(f_{1,i}(z), \ldots, f_{m,i}(z) \) be the functions obtained from those in (1) by replacing all coefficients of their power series by the corresponding conjugate numbers of the field \(K_i \), and let the polynomials \(P_i, Q_i, R_i \), \(i = 1, \ldots, h \), be similarly obtained from the polynomials \(P, Q, R \in \mathbb{K}[z, z_1, \ldots, z_m] \) introduced below.

In 1973, V. G. Chirskii proved the following theorem in the inhomogeneous case [3].

Theorem 1. If the coefficients of the power series of the functions (1) and the number \(\xi \), \(\xi T(\xi) \neq 0 \), \(\xi \not\in \Lambda \), belong to an imaginary quadratic algebraic field over \(\mathbb{Q} \), then the numbers (6) are homogeneously algebraically independent (algebraically independent, respectively).

Under similar assumptions, but for an arbitrary field \(K \), the following assertion was established in 1989 (see [2]).

Theorem 2. There is an index \(i \), \(1 \leq i \leq h \), such that the numbers
\[
(7)
\]
are homogeneously algebraically independent (algebraically independent, respectively).

Below we prove an assertion that generalizes Theorems 1 and 2.

Let \(\xi \in \mathbb{C} \) and let \(\varphi : \mathbb{C}[z, z_1, \ldots, z_m] \to \mathbb{C}[z_1, \ldots, z_m] \) be the homomorphism obtained by replacing the variable \(z \) by \(\xi \) in all polynomials of the ring \(\mathbb{C}[z, z_1, \ldots, z_m] \). For an arbitrary ideal \(\mathfrak{U} \) of this ring, we denote by \(\mathfrak{U}_\xi = \varphi \mathfrak{U} \mathfrak{U} \) the ideal corresponding to \(\mathfrak{U} \) in the ring \(\mathbb{C}[z_1, \ldots, z_m] \) under the homomorphism \(\varphi \).

Let \(\mathfrak{P}_\xi^0 \) (\(\mathfrak{P} \), respectively) be the prime ideal of the ring \(\mathbb{C}[z, z_1, \ldots, z_m] \) generated by all polynomials homogeneous with respect to \(z_1, \ldots, z_m \) (by all polynomials, respectively) that vanish when the functions (1) are substituted for \(z_1, \ldots, z_m \). If the functions (1) are homogeneously algebraically independent, then we set \(\mathfrak{P}_\xi^0 = (0) \) (\(\mathfrak{P} = (0) \)).

Note that the ideal \(\mathfrak{P}_\xi^0 \) is prime for any \(\xi \in \Lambda \) except for finitely many such numbers [4].

If \(\xi \in \Lambda \) satisfies \(\xi T(\xi) \neq 0 \) and the homogeneous ideal \(\mathfrak{P}_\xi^0 \) (the ideal \(\mathfrak{P}_\xi \)) corresponding to the functions (1) is prime, then the collection of the functions (1) is said to be homogeneously prime (prime, respectively) at the point \(\xi \).

Theorem 3. Assume that a collection of \(E \)-functions (1) forms a solution of system (2) (of system (3), respectively), has the degree of homogeneous transcendence (the degree of transcendence, respectively) over \(\mathbb{C}(z) \) equal to \(l \), \(1 \leq l \leq m \), and is homogeneously prime (prime, respectively) at a point \(\xi \in \Lambda \), such that \(\xi T(\xi) \neq 0 \) and \(\xi \not\in \Lambda \). We also assume that the functions (5) are homogeneously algebraically independent (algebraically independent, respectively) over \(\mathbb{C}(z) \).

Then the numbers (7) are homogeneously algebraically independent (algebraically independent, respectively) for any \(i \), \(1 \leq i \leq h \).

We note that the inhomogeneous versions of Theorems 1, 2, and 3 are consequences of their homogeneous versions. We must only replace the number \(m \) by \(m+1 \) and set \(f_{m+1}(z) \equiv 1 \). Therefore, in the subsequent discussion, we consider the homogeneous cases only.

To prove Theorem 3, we shall need two theorems that are of independent interest as well.

Theorem 4 [4]. If a collection (1) of \(E \)-functions forms a solution of system (3) and is homogeneously prime at a point \(\xi \in \Lambda \), \(\xi T(\xi) \neq 0 \), then, for any homogeneous polynomial
\[
P = P(z_1, \ldots, z_m) \in \mathbb{A}[z_1, \ldots, z_m], \quad P \not\in \mathfrak{P}_\xi^0,
\]
367