RESEARCH ARTICLE

The Pseudovariety Generated by Completely 0-Simple Semigroups

G. Mashevitzky*

Communicated by Boris M. Schein

Abstract

A finite basis of pseudoidentities of the pseudovariety generated by all finite completely 0-simple semigroups is constructed. Thus this pseudovariety is decidable.

Introduction

A pseudovariety of semigroups is a class of finite semigroups that is closed with respect to subalgebras, homomorphic images and finite direct products. It is obvious that the trace $\mathcal{V} \cap \mathcal{F}$ of any variety \mathcal{V} of semigroups in the class \mathcal{F} of all finite semigroups is a pseudovariety. Any pseudovariety is such a trace or a direct limit of a direct family of such traces [2].

An n-ary implicit operation on a pseudovariety \mathcal{P} is a mapping π associating with each finite semigroup $S \in \mathcal{P}$ an n-ary function $\pi_S : S^n \to S$ on S such that, for every homomorphism $f : S \to T$ between finite semigroups from \mathcal{P}, π commutes with f, that is

$$(\forall s_1, \ldots, s_n \in S)(f(\pi_S(s_1, \ldots, s_n)) = \pi_T(f(s_1), \ldots, f(s_n))$$

A pseudoidentity is a formal identity of implicit operations. A pseudoidentity $\pi = \rho$ is valid in a semigroup S if $\pi_S = \rho_S$. Every pseudovariety can be defined by a system of pseudoidentities, that is, it consists of all finite semigroups satisfying the given set of pseudoidentities [8].

Let S be a finite semigroup. For every element $a \in S$, in the monogenic subsemigroup (a) there exists a unique idempotent a^w. The function $a \to a^w$ is an example of an implicit operation.

One of the central problems in the theory of pseudovarieties is the membership problem: does a given finite semigroup belong to a given pseudovariety? The membership problem is decidable if there exists an algorithm that solves this problem. A pseudovariety with decidable membership problem is called decidable.

Let Ξ_0 denote the system of the following four pseudoidentities:

(1) $$(xy)^{w+1}x = xyx$$

(2) $$x^{w+2} = x^2$$

* Partially supported by Israel Ministry of Absorption
(3) \[(xyz)^w xhz = xhz(xyz)^w\]

(4) \[(xy)^w xzx = xz(xy)^w x.\]

Let \(PG \) be a pseudovariety of groups and \(P\text{Var}(CS^0(PG)) \) the pseudovariety generated by all finite completely 0-simple semigroups over the groups from \(PG \).

We prove the following theorem and its corollaries.

Theorem. Let \(\Xi_1 \) be a system of pseudoidentities holding in the pseudovariety \(P\text{Var}(CS^0(PG)) \) and suppose that it forms a basis of pseudoidentities of the pseudovariety \(PG \) in the class of groups (that is, it distinguishes \(PG \) among pseudovarieties of groups). Then the system of pseudoidentities \(\Xi' = \Xi_1 \cup \Xi_0 \) forms a basis of pseudoidentities of the pseudovariety \(P\text{Var}(CS^0(PG)) \).

Corollary 1. Let \(PG \) be a decidable pseudovariety of groups. Then the pseudovariety \(P\text{Var}(CS^0(PG)) \) is decidable.

Corollary 2. \(\Xi_0 \) is a basis of the pseudovariety generated by all finite completely 0-simple semigroups.

Corollary 3. The pseudovariety generated by all finite completely 0-simple semigroups is decidable.

Our proof uses an improved and developed version of a method that reduces the finite basis problem in the class of all semigroups to the same problem in the class of regular semigroups (see [6] and [7]).

An independent and alternative proof of these Corollaries has been announced in [3].

1. **Notation and Preliminaries**

The facts of the semigroup theory that we use can be found in [1] and [4].

Let \(G \) be a group, \(G^0 \) the semigroup \(G \cup \{0\} \), \(I \) and \(\Lambda \) sets and \(P \) an \(I \times \Lambda \) matrix over \(G^0 \). Let \(M^0(G,I,P,\Lambda) \) be the set \(\{(a,\lambda,i)|a \in G, \lambda \in \Lambda, i \in I\} \cup \{0\} \) with the multiplication

\[(a,\lambda,i)(b,\mu,j) = \begin{cases} (ap_{iu}b,\lambda,j), & \text{if } p_{iu} \neq 0, \\
0, & \text{if } p_{iu} = 0. \end{cases} \]

0 is a zero of this semigroup.

This defines a semigroup called a **Rees semigroup of matrix type** over \(G \) presented with the help of the sandwich matrix \(P \). The matrix \(P \) is called **regular** if there are nonzero elements in every row and in every column of \(P \). A semigroup is completely 0-simple if and only if it is isomorphic to a Rees semigroup of matrix type over a group with 0 adjoined presented with the help of a regular sandwich matrix ([1] and [4]).

Let \(G \) be a variety of groups. Denote by \(CS^0(G) \) the class of all completely 0-simple semigroups over groups from \(G \). Let \(CS^0_k \) denote the class of all completely 0-simple semigroups over groups of exponent \(k \).