ELECTRON SPECTRA OF Me7Eu2UO2(PO4)5 CRYSTALS

V. V. Syt'ko, A. Aleshkevich, E. L. Tikhova, D. S. Umreiko, and I. A. Khartonik

Absorption and luminescence spectra of Me7Eu2UO2(PO4)5 crystals (Me represents Na, Rb, or Cs) are investigated. It is established that the luminescence of Eu3+ ions in these crystals is sensitized by uranyl. The effect of the outer-sphere cation Me+ on the spectroscopic properties and structural features of the compounds under study is considered.

Key words: spectrum, crystal, uranyl, europium, energy transfer.

Sensitization of the luminescence of rare-earth ions (REIs) in highly concentrated materials opens up fresh opportunities for spectral matching of luminophors and laser media and increasing lasing efficiency. Of particular interest is the use as a donor of uranyl complexes with high absorption coefficients in which the lower excited state is above the levels of the excited states of trivalent REIs involved in luminescent and laser transitions.

The luminescence of trivalent REIs in condensed media sensitized by the uranyl UO22+ was investigated earlier [1-24]. It was noted that even with an extremely high concentration of active ions the quantum efficiency of the transfer of electron-excitation energy from UO22+ to La3+ in crystal phosphate matrixes attains practically 100%. Very high efficiencies of REI sensibilization by uranyl (~90%) are obtained for glasses.

Since the maximum rate of the transfer of electron-excitation energy is attained (all other things being equal) for the minimum "donor-acceptor" distance, which is ensured by the minimum possible length of the ligand molecule, it is appropriate to consider orthosystems among phosphate materials. We planned possible structures in terms of dynamic crystal chemistry [25, 26] under the assumption of isolation of the uranyl and lanthanide coordination polyhedrons. What was implied was that the coordination saturation of active ions is attained in the presence of at least 4 ligands in UO22+ and 8 ligands in Ln3+. Phosphorus was considered as the third coordination center, with a coordination number (c.n.) of 4. The condition of the division of the vertices in the coordination polyhedrons leads to orthophosphate skeletons of the type

\[[\text{Ln}_{m_1}(\text{UO}_2)_{m_2}P_{m_3}O_{m_0}]^Z, \]

whose parameters are related in the following manner:

\[m_0 = m_1 \left(\frac{p_{11}}{a_1} + \frac{p_{13}}{2} \right) + 2m_2 + m_3 \left(\frac{p_{31}}{2} + \frac{p_{32}}{2} + \frac{p_{33}}{a_3} \right), \]

\[Z = m_1 \left[3 - 2 \left(\frac{p_{11}}{a_1} + \frac{p_{13}}{2} \right) \right] - 2m_2 - m_3 \left[5 - 2 \left(\frac{p_{31}}{2} + \frac{p_{32}}{2} + \frac{p_{33}}{a_3} \right) \right], \]

\[m_1 \left(\frac{p_{11}}{a_1} + \frac{p_{13}}{2} \right) + 2m_2 + m_3 \left(\frac{p_{31}}{2} + \frac{p_{32}}{2} \right) = 4m_3, \]

where m_i is the number of the i-type complexing agents, while p_{ij} is the j-vertex of its polyhedron,

$$\sum_j p_{ij} = p_i$$

(p_i is the number of the vertices of the ith complexing agent's polyhedron); Z is the total charge compensated by the corresponding number of the outer-sphere cations. Allowance for the concentration dependence of the energy-transfer efficiency on the ratio of the components in glasses showed that, from the viewpoint of the efficiency of donor-acceptor interaction, the optimum ratio $U:Ln = 1:2$. This enabled us to propose the formula $M_7 Ln_2 UO_2 (PO_4)_5$ for crystals of triple orthophosphates produced by solid-phase synthesis in a $M_7 Eu_2 UO_2 (PO_4)_5$ series with different outer-sphere cations (M represents Na, Rb, and Cs).

Absorption spectra for the crystals investigated are satisfactorily described in the model of additive chromophores — Eu^{3+} and UO_2^{2+} ions, while the excitation spectra in the region above 21,000 cm$^{-1}$ recorded in the lines of Eu^{3+} and UO_2^{2+} luminescence coincide and correspond to the absorption of the uranyl chromophore (Fig. 1). The intensity of Lu^{3+} luminescence exceeds by two orders of magnitude the intensity of UO_2^{2+} luminescence. Furthermore, the quantum yield of Eu^{3+}-ion luminescence is higher by two orders of magnitude than in uranyl-free analogs. All this shows that, as in the systems studied earlier [1-24], the luminescence of Eu^{3+} in the $M_7 Eu_2 UO_2 (PO_4)_5$ crystals is sensitized by uranyl.

The luminescence spectra for uranyl in the $M_7 Eu_2 UO_2 (PO_4)_5$ crystals are similar to a considerable degree to the spectra in $Cs_4 Eu_2 UO_2 (P_2 O_7)_3$ [14, 16, 22, and 24] (Fig. 2). However they differ significantly from the luminescence spectra of the corresponding crystal uranyl phosphates by higher diffusion and are similar to the luminescence spectra of uranyl-phosphate glasses and glasses coactivated simultaneously by UO_2^{2+} and Ln^{3+} ions. The spectra themselves are represented by a line of pure electronic transition and its vibrational repetitions with the frequency of fully symmetric stretching vibrations of the uranyl ion $\nu_s(O=U=O)$. Other frequencies of the vibrations of the uranyl complex in the luminescence spectra are not found. The half-widths of the spectral lines of UO_2^{2+} luminescence lie in the range of 250-400 cm$^{-1}$. The Stokes parameters are ~ 1.3. This, as the spectral diffusion mentioned, points to a rather significant interaction of the uranyl ion with the phosphate matrix.