UNBOUNDED SEMIDISTRIBUTIVE LATTICES

J. B. Nation

UDC 512.565

In memory of Viktor A. Gorbunov

We consider two properties which are close to being lower bounded in the class of finite join semidistributive lattices. An example is constructed in which a finite join semidistributive lattice has both these two properties, but it is not lower bounded.

The purpose of this account is to illustrate a construction technique which has proved useful, and apply it to solve an interesting problem. Namely, we answer in the negative the question as to whether a finite lattice satisfying properties (P) and (Q), which are close to boundedness, is bounded. For a more complete discussion of the theory of bounded homomorphisms and lattices, see [1, Ch. II].

1. UNBOUNDED LATTICES

We begin with a well known criterion for meet semidistributivity. If \(L \) is a finite lattice and \(a \in J(L) \), let \(\kappa(a) \) be the largest element above \(a_* \) but not above \(a \), if such an element exists. We regard \(\kappa : J(L) \to M(L) \) as a partial map.

LEMMA 1. Let \(L \) be a finite lattice. Then \(L \) satisfies \(SDA \) if and only if \(\kappa(a) \) exists for each \(a \in J(L) \). Moreover, if a finite lattice \(L \) satisfies \(SDA \), then \(\kappa \) maps \(J(L) \) onto \(M(L) \). If \(L \) also satisfies \(SD_v \), then \(\kappa \) is one-to-one, and the dual map \(\kappa^d : M(L) \to J(L) \) is its inverse.

We define the standard dependency relations on \(J(L) \) as follows (assuming \(SDA \) for the first three):

\[
\begin{align*}
A & \leq B \iff b < a < \kappa(b) \gamma; \\
A & \leq B \iff a \neq b, b \not\leq \kappa(a), \text{ and } b_* \leq \kappa(a); \\
A & \leq b \iff a \mathrel{\kappa} a, \text{ and } b \mathrel{\kappa} b; \\
A & \leq B \iff \text{there exists } x \in L \text{ such that } a \leq b \oplus x \text{ but } a \not\leq b \oplus x.
\end{align*}
\]

Thus \(A \cup B = C \subseteq D \).

The dual relations are defined on \(M(L) \). In semidistributive lattices, they behave particularly nicely, as is shown by the following result.

LEMMA 2 (see [2]). Let \(L \) be a finite semidistributive lattice and let \(a, b \in J(L) \). We have:

1. \(A \leq B \) if and only if \(\kappa(a) \mathrel{\kappa} B \).
2. \(A \leq B \) if and only if \(\kappa(a) \mathrel{\kappa} B \).

Recall the basic results on boundedness (in the sense of McKenzie) and \(D \)-cycles.

THEOREM 3. A finite lattice \(L \) is lower bounded if and only if \(L \) contains no \(D \)-cycle. Moreover, every lower bounded lattice satisfies \(SD_v \).

THEOREM 4. A finite semidistributive lattice \(L \) is bounded if and only if \(L \) contains no \(C \)-cycle.
We will be interested in semidistributive lattices which satisfy the condition

\((P) \) if \(a, b \in J(L) \) and \(b < a \), then \(aAb \)

and its dual

\((Q) \) if \(p, q \in M(L) \) and \(q > p \), then \(pAdq \).

Note that \(pAdq \) is equivalent to \(\kappa^d(p)B\kappa^d(q) \).

In [3], Caspard proved that the lattice \(S_n \) of all permutations of an \(n \)-element set is bounded. In [4], she proved that these lattices satisfy \((P) \) and \((Q) \), and used this to give a nice characterization of the linear orders on \(J(S_n) \) which are consistent with the dependency relation \(D \). Thus it seems natural to ask the following:

If a finite semidistributive lattice satisfies \((P) \) and \((Q) \), must it be bounded?

We will show that the answer is ‘no.’

2. SEMIDISTRIBUTIVE LATTICES

Lemma 5. If \(L \) is a finite lattice which fails SD\(_\lor \), then there exist distinct elements \(a, b \in J(L) \) and \(c \in L \) such that \(a \lor c = b \lor c > c \), \(a_* = c \), and \(b_* = c \).

Proof. Suppose \(a_0 \lor c_0 = b_0 \lor c_0 > (a_0 \land b_0) \lor c_0 \) in \(L \). Choose \(c \) such that \(a_0 \lor b_0 > (a_0 \land b_0) \lor c_0 \). Then choose \(a \) minimal such that \(a \leq a_0 \), but \(a \not\leq c \), and choose \(b \) minimal such that \(b \leq b_0 \) but \(b \not\leq c \).

As an immediate application, we have the following results, which characterize join semidistributivity as a sort of weak lower boundedness.

Theorem 6. Let \(L \) be a finite lattice. Then \(L \) fails SD\(_\lor \) if and only if there exist distinct elements \(a, b \in J(L) \) and \(x \in L \) such that \(a \lor x = b \lor x \), \(a \not\leq b \lor x \), and \(b \not\leq a \lor x \).

Corollary 7. If \(L \) is a finite lattice which fails SD\(_\lor \), then \(L \) is not lower bounded. In fact, there exist \(a, b \in J(L) \) such that \(aDbDa \) via the same element \(x \).

Figure 1 gives a lattice which satisfies SD\(_\lor \) but which contains a short cycle \(aDbDa \), via distinct elements \(x \) and \(y \).

Theorem 8. Let \(L \) be a finite lattice which satisfies SD\(_\land \). Then \(L \) fails SD\(_\lor \) if and only if there exist \(a, b \in J(L) \) such that \(aBbBa \).