A property of the character table for a finite group

V. A. Belonogov*

A character table X of a finite group is broken up into four squares: A, B, C, and D. We establish relations via which ranks of the matrices in X are connected. In particular, if X is an $l \times l$-matrix, A is an $s \times t$-matrix, and, moreover, the squares A and C are opposite, then $r(A) = r(C) + s + t - l$; here, $r(M)$ is the rank of a matrix M. Associated with such each block of X is some integral nonnegative parameter m, and we have $m = 0$ iff A, B, C, and D are active fragments of X.

1. INTRODUCTION

Let G be a finite group, D be its normal subset, and $\Phi \subseteq \text{Irr}(G)$. If X is some table of characters for G, $X(\Phi, D)$ denotes a submatrix in X lying at the intersection of rows corresponding to the characters of Φ and columns corresponding to the elements in D. Next, by $k(G)$ we denote the number of conjugacy classes of elements of G, and by $k_G(D)$ the number of such in D. Thus $X(\Phi, D)$ is a $|\Phi| \times k_G(D)$-submatrix of the $k(G) \times k(G)$-matrix X. Put $D^{-} = G \setminus D$ and $\Phi^{-} = \text{Irr}(G) \setminus \Phi$. A (suitable) character table X is divided into parts as is shown in Fig. 1, where each square indicates the rank of a respective matrix. Obviously,

$$r_1 + r_2 \geq |\Phi| \quad \text{and} \quad r_1 + r_3 \geq k_G(D). \tag{1}$$

In [1], it was shown that these relations turn into equalities iff D interacts with Φ; see also Lemma 1 below, followed by the definition of the notion of interaction.

In the present article we study relations among r_1, r_2, r_3, and r_4 for arbitrary D and Φ. In particular, we give some data on differences of the left- and right-hand sides of the inequalities in (1).

The rank and the determinant of a matrix M are denoted by $r(M)$ and $\det(M)$, respectively.

The key result of the article is the following:

THEOREM. Let G be a finite group, X its character table, D a normal subset in G, and $\Phi \subseteq \text{Irr}(G)$. Then there exists a nonnegative integer m which depends on G, D, and Φ and is such that

$$r(X(\Phi, D)) + r(X(\Phi, D^{-})) = |\Phi| + m,$$

$$r(X(\Phi^{-}, D)) + r(X(\Phi^{-}, D^{-})) = |\Phi^{-}| + m,$$

$$r(X(\Phi, D)) + r(X(\Phi^{-}, D)) = k_G(D) + m,$$

$$r(X(\Phi, D^{-})) + r(X(\Phi^{-}, D^{-})) = k_G(D^{-}) + m.$$
Moreover, \(m = 0 \) iff \(D \) interacts with \(\Phi \).

In particular, if \(G, X, D, \) and \(\Phi \) satisfy the conditions of the theorem, then

\[
r(X(\Phi, D)) = r(X(\Phi^{-}, D^{-})) + |\Phi| + k_G(D) - k(G) + 14,
\]

In turn the theorem immediately implies the result given immediately below, which states the existence of nonzero submatrices, in particular, nonzero elements, in the character table: we need only consider the difference of the first and fourth equalities in our theorem; see also [1, Thm. 8A8].

COROLLARY. Let \(G, X, D, \) and \(\Phi \) satisfy the conditions of the theorem. Then the following are equivalent:

1. \(r(X(\Phi, D)) = |\Phi| + k_G(D) - k(G) \);
2. \(X(\Phi^{-}, D^{-}) = 0 \) (zero matrix).

Notice: In our theorem (and its corollary), we do not presume that the sets \(D, D^{-}, \Phi, \) and \(\Phi^{-} \) are nonempty, that is, some squares of \(X \) in Fig. 1 can well be the empty matrices, by which are meant ones with 0 rows and 0 columns. The rank of the empty matrix is, as usual, assumed equal to zero.

2. **PROOF OF THE THEOREM**

We start with some auxiliary statements.

LEMMA 1. Let \(G, X, D, \) and \(\Phi \) be as in the theorem. Then the following conditions are equivalent:

1. \(r(X(\Phi, D)) + r(X(\Phi^{-}, D^{-})) = |\Phi| \);
2. \(r(X(\Phi, D)) + r(X(\Phi^{-}, D)) = k_G(D) \);
3. \(D \) interacts with \(\Phi \).

We can see that this is in fact part of Theorem 8A6 in [1].

Recall the definition of the notion of interaction. \(D \) is said to *interact* with \(\Phi \) if the \(D \)-cutting \(\varphi \mid_D \) of any character \(\varphi \) in \(\Phi \) is a linear combination (with complex coefficients) of the characters in \(\Phi \); \(\varphi \mid_D \) coincides with \(\varphi \) on \(D \) and vanishes on \(G \setminus D \). If \(D \) interacts with \(\Phi \), \(X(\Phi, D) \) is called an **active fragment** of the table \(X \). (A classical example where the sets \(D \) and \(\Phi \) are interacting is the case where \(D \) is the union of an arbitrary set of \(p \)-sections of \(G \) and \(\Phi \) is the union of an arbitrary set of \(p \)-blocks in \(G \), \(p \) is a prime; see [1, Sec. 5H].)