A SHARP SLENDER CONE IN AN INCOMPRESSIBLE FLOW

S. E. Selezneva

The range of applicability of the asymptotic solution of the problem of incompressible flow past a slender cone is studied.

The asymptotic problem of the flow in the vicinity of a sharp conical nose can be reduced to the solution of the Legendre equation with noninteger eigenvalues $1 < n < 2$ which can be represented in hypergeometric series form. The calculation of the series, like the straightforward, computer-aided solution of the boundary value problem, does not present a particular problem; however, in the case of a slender cone with a small semivertex angle θ_0, it is somewhat complicated owing to the singularity of the solution as $\theta_0 \to 0$. An asymptotic solution for this case was derived in [1]; the eigenvalue spectrum for this problem was also found in [2]. In what follows, we analyze the range of applicability of the asymptotic solution and demonstrate that it can be used for cones with semivertex angles $\theta_0 \leq 20^\circ$.

In a spherical reference frame r, θ, ϕ centered on the nose of the body and having the ray $\theta=0$ opposed to the freestream velocity, as shown in Fig. 1, the equation for the velocity potential has the form:

$$ r \frac{\partial}{\partial r} r^2 \frac{\partial \Phi}{\partial r} + \frac{r}{\sin \theta} \frac{\partial}{\partial \theta} \left[\sin \theta \frac{\partial \Phi}{\partial \theta} \right] = 0 $$

$$ V_r = \frac{\partial \Phi}{\partial r}, \quad V_\theta = \frac{1}{r} \frac{\partial \Phi}{\partial \theta}, \quad V_\phi = \frac{1}{r \sin \theta} \frac{\partial \Phi}{\partial \phi} = 0 $$

The following family of solutions corresponds to the problem formulated

$$ \Phi = C U_r r^n \Theta(\theta), \quad C = \text{const}; \quad V_r = n C U_r r^{n-1} \Theta'(\theta), \quad V_\phi = C U_r r^{n-1} \Theta'(\theta) $$

The constant C has the dimensionality $L^{1-\alpha}$, where L is a scale length; it should be determined by matching this local solution with the global one. The $\Theta(\theta)$ dependence is obtained from the solution of the following eigenvalue problem

$$ (\Theta' \sin \theta)' + n(n + 1) \sin \theta \Theta = 0; \quad \Theta_\theta - \Theta = 0, \quad \theta = 0, \pi - \theta_0 $$

The substitution $t = \cos \theta$ in Eq. (3) leads to the canonical Legendre equation

$$ \frac{d}{dt} \left[(1 - t^2) \frac{d\Theta}{dt} \right] + n(n + 1) \Theta = 0 $$

$$ \theta = 0, \quad t = 1, \quad \frac{d\Theta}{dt} = -\sin \theta \frac{d\Theta}{dt} = 0; \quad \theta = \pi - \theta_0, \quad t = 0, \quad \frac{d\Theta}{dt} = 0 $$

For integer n, the solution of this equation is given by the Legendre polynomials $P_n(t), P_n(1)=1$. Two of these polynomials

$$ \Theta_1 = -P_1 = -t, \quad n = 1, \quad \theta_0 = 0; \quad \Theta_2 = -P_2 = \frac{3}{2} t^2 + \frac{1}{2}, \quad n = 2, \quad \theta_0 = \frac{\pi}{2} $$

correspond to the undisturbed stream and the flow in the vicinity of the stagnation point on a flat-faced body, respectively. The interval $1 < n < 2$ corresponds to the cone semivertex angles $0 < \theta_0 < \pi/2$. At $n > 2$, the eigenfunctions incorporate additional rays (apart from the axis of symmetry and the conical surface) on which the condition $\partial \Theta / \partial \theta = 0$ is fulfilled. Thus, for $\Theta = P_1$ these rays are $\Theta_1 = 75^\circ$ and $\Theta_2 = 135^\circ$. These solutions describe the flow within the angles formed by these rays and may be of interest only as the terms of the series-expansion of the solution for a finite-length cone.
For noninteger \(n \) and \(|t| < 1\), Eq. (4) has particular solutions which are regular at one of the singular points \(t = \pm 1 \) and singular at the other point. The formal solution of the problem formulated is given by a Legendre function of the first kind or a hypergeometric series:

\[
\Theta(t) = -P_n(t) = -F(-n, n + 1, 1, 1 - t/2), \quad P_n(1) = 1
\]

(6)

A set of Legendre functions\(^1\) with the opposite sign is also the solution of the problem (4), (5) in the region \(0 < \theta < \pi - \theta_0 \); the eigenvalue \(n \) is then determined from condition (5).

For slender cones \((\theta_0 \ll 1, n = 1)\), the direct solution of the problem is somewhat complicated by the fact that the conical surface is located within the domain of influence of the singular point \(t = 1 \). However, in this case the asymptotic solution of Eq. (4) can be obtained by linearizing this equation. The equation is linear in \(n \) and nonlinear with respect to the eigenvalue problem since both \(\theta \) and \(n \) depend on \(\theta_0 \).

The following solution was derived in [1] for cones with small semivertex angles:

\[
\Theta = -t + \varepsilon \Theta_1 + \ldots, \quad n = 1 + \varepsilon, \quad \varepsilon < 1
\]

(7)

Substituting (7) in (5), retaining terms of the order of \(\varepsilon \) only, eliminating the singularity as \(t \to 1 \) by an appropriate choice of constants in the solution, and satisfying the condition \(\Theta_1(1) = 0 \), we easily obtain

\[
\Theta_1 = t [\ln 2 - \ln (1 + t)] + 1 - t
\]

(8)

Since at small \(\theta_0 \) we have \(1 + \tau_0 = \theta_0^2 / 2 \), from the condition \(\partial \Theta / \partial \varepsilon = 0 \) there follows

\(^1\)These functions were tabulated in [3] but with a fairly large step in \(n \) and on the interval \(0 \leq \theta < \pi/2 \) only.