Rotational Bands in 182Ta (*)

B. Bizzarri, P. Nunberg and D. Prosperi

Laboratorio di Fisica Nucleare Applicata
Centro di Studi Nucleari della Casaccia del CNEN - Roma

Summary. — We have re-examined the decay of the 16-minute isomer 182Ta in order both to look for hitherto undetected transitions and to obtain further evidence on the multipolarities of the already known ones. We have measured γ-ray and conversion-electron spectra. In agreement with a previous result by Sunyar and Axel we have found that the decay scheme of the isomer involves three states at excitation energies of $(147.0 \pm 0.3), (319.1 \pm 0.6), (504.6 \pm 1.2)$ keV. If the ground-state activation cross-section is taken as 21 barn, the corresponding value for the isomer is (13 ± 2) mb. The half-life is $T_\frac{1}{2} = (15.84 \pm 0.10)$ min. We have further attempted to fit all the presently known data on 182Ta in a single level scheme. The experimental results obtained by the decay of the isomer and by 181Ta(d, p) reactions have been compared with the predictions of the unified model. The relative positions of the rotational bands in 182Ta are strongly affected by the properties of the effective (n, p) residual interaction introduced in the calculation.

1. - Introduction.

In the course of a general review of the properties of odd-odd deformed nuclei, we have been struck by the fact that although many authors have investigated the structure of 182Ta, no attempt has yet been made to fit the presently known data into a single level scheme.

After describing the results of some measurements performed in our laboratory we shall therefore attempt to fix the energies and quantum numbers of the lowest-lying levels.

(*) Supported in part by Euratom/CNEN-INFN Contract No. 002-11-MPAI.
Our interpretation is still tentative but we believe that its main features have a good chance of being correct.

2. Review of existing data.

The main sources of experimental evidence on 182Ta are:

a) the 181Ta(d, p) reaction,
b) the 181Ta(n, γ) reaction,
c) the decay of the 16 min isomeric state of 182Ta.

Let us now comment briefly on these three points.

![Figure 1](image)

Fig. 1. - Review of existing data (all energies in keV).

a) 181Ta(d, p) reaction. – The best experiment on the (d, p) reaction is that due to [1], the energy resolution being about 8 keV. The levels found in this experiment are shown in Fig. 1, a) together with