Introduction

The genus *Bromus* L. (tribe Bromeae, family Poaceae) comprises about 160 annual and perennial species (Acedo and Liamas 2001), distributed all over the world. *Bromus* species are among important range grasses of Iran and are placed in six sections, of which section *Genea* Dum. contains six perennial species found in Iran (Bor 1970). The available literature dealing with cytogenetics of *Bromus* (e.g. Devesa *et al*. 1990; Lövkvist and Hultgård 1999), indicates the importance of such cytological studies for understanding the evolution of the genus *Bromus*. Therefore, we studied chiasma frequency and distribution, as well as chromosomal association and segregation, in ten Iranian populations of six *Bromus* species from the section *Genea*. The results uncovered several hitherto undescribed inter-population variations in cytological characteristics.

Materials and methods

Plant material

We studied ten populations of six *Bromus* species: *B. tectorum* L. (two populations), *B. sericeus* Drobow. (two populations), *B. madritensis* L. (one population), *B. rubens* L. (two populations), *B. fasciculatus* Presl. (one population), and *B. sterilis* (two populations). Voucher specimens are deposited in the Herbarium of Shahid Beheshti University (HSBU) and Herbarium of Iran Botanical Garden (TARI).

Cytological preparation and meiotic analysis

Young flower buds were collected from ten randomly selected plants of each population, fixed in glacial acetic acid: ethanol (1 : 3) for 24 h, and then washed and preserved in 70% ethanol at 4°C until used, following Sheidai *et al*. (2003). Cytological preparations used squash technique and 2% aceto-orcein as the stain.

Between 50 and 100 pollen mother cells (PMCs) were analysed for chiasma frequency and distribution at diakinesis/metaphase stage, and 500 PMCs were analysed for chromosome segregation during the anaphase and telophase stages. Pollen stainability, as a measure of fertility, was determined by staining a minimum of 1000 pollen grains with 2% acetocarmine: 50% glycerin (1 : 1) for about 30 min. Round/complete pollens which were stained were taken as fertile, while incomplete/shrunken pollens with no stain were considered as infertile (Sheidai *et al*. 2003).

Results and discussion

Overall, the *Bromus* species studied here showed pollen fertility of 88% (*B. rubens*) to 99% (*B. tectorum*). The possible reasons for a low reduction of pollen fertility in *Bromus* species may be chromosome stickiness, laggard formation and cytomixis.

Chromosome number and chiasmata

Both populations of *B. tectorum* possessed $n = 7$ ($2n = 2x = 14$) chromosome number (figure 1 b,d), supporting an earlier report (Lövkvist and Hultgård 1999; but see also Devesa *et al*. 1990). Although more total and terminal chiasmata as well as ring bivalents were observed in Zahedan population of *B. tectorum* compared to the Fars population (table 1), the differences were not significant ($t = 1.18, P = 0.30$). The two populations of *B. sericeus* studied differed in their ploidy level. The Iranshahr population possessed $n = 14$ ($2n = 4x = 28$) chromosome number (figure 1c), while the Khash population possessed $n = 7$ ($2n = 2x = 14$). The earlier study on this species reports the somatic chromosome number of $2n = 14$ (Bolkovskikh *et al*. 1969). Therefore, this is the first report on among-population variation in ploidy level of *B. sericeus*.

Keywords. B-chromosomes; *Bromus*; chiasma frequency; cytomixis.

For correspondence. E-mail: msheidai@yahoo.com
Figure 1. Representative meiotic cells in Bromus species. (a) *B. rubens* showing $n = 14$; (b) *B. tectorum* (Za- hedan population) showing $n = 7$; (c) *B. sericeus* (Iranshahr population) showing $n = 14$; (d) *B. tectorum* (Fars population) showing $n = 7$; (e) *B. fasciculatus* (Booshehr population) showing $n = 14$; (f) *B. sterilis* (Kerman population) showing $n = 7$ (scale bar = 10 μm).