Reduced-Amplitude Equations
for Two- and Three-Particle Systems - II (').

M. O. Taha

Department of Applied Mathematics and Theoretical Physics
University of Cambridge - Cambridge

(ricesuto il 19 Novembre 1965)

Summary. — Reduced amplitudes are simultaneously defined for two particle→three particle and three particle→three particle processes. They are shown to lack the physical-region singularities: the subenergy cuts, the total discontinuity, the separate energy cuts and, in 3→3, the cross-energy poles. A reduced amplitude for two particle→two particle scattering lacking the three-particle, as well as the two-particle, cut is also defined. This simultaneously involves the three particle→two particle interaction for which a reduced amplitude is thus obtained. This analysis is relativistic and nonpotential-theoretic.

1. — Introduction.

The general introduction to this work and its motivation are given in paper I (1), which also includes a discussion of the significance and interpretation of the final equations and gives two deductions as special cases. It is the purpose to prove in this paper the main results: the definition of the reduced amplitudes, free of the physical-region singularities and the reduction of the equations to the final form used in paper I. It was thought convenient to present the work

(1) The research reported in this document has been sponsored in part by the Air Force Office of Scientific Research, OAR, under Grant AF EOAR 63-79 with the European Office of Aerospace Research, United States Air Force.

51 - Il Nuovo Cimento A.
in two separate parts because of the rather involved algebraic nature of the main derivations given in the present paper.

The theory of the two-particle «K-matrix» has recently been extended by Branson (2) to three-particle scattering under the assumption that the quantum numbers of the scattering particles forbid a two-particle intermediate state. It is with the aim of relaxing this assumption that in Sect. 2, using different methods, we simultaneously define two reduced amplitudes \(K^{23} \) and \(K^{33} \) for two-particle \(\rightarrow \) three-particle and three-particle \(\rightarrow \) three-particle interactions respectively. The transition amplitude \(A^{23} \) (for 3 \(\rightarrow \) 3 scattering) cannot be considered separately when this assumption is dropped. The amplitudes \(K^{23} \) and \(K^{33} \) are defined in terms of \(A^{22} \) and \(A^{33} \) (simultaneously) and a number of auxiliary functions denoted \(R^{23}, S^{23}, M^{33} \) and \(N^{33} \). Conditions are placed on these auxiliary functions by requiring \(K^{23} \) and \(K^{33} \) to be free of the subenergy cuts and the total discontinuity below the four-particle threshold. The equations arrived at (for the auxiliary functions) are then shown to provide sufficient conditions for \(K^{23} \) and \(K^{33} \) to lack the singularities. \(K^{23} \) and \(K^{33} \) are also shown to lack the energy cuts separately. When \(K^{23} = 0 \), the reduced amplitude \(K^{33} \) becomes identical with the amplitude \(G \) of Branson (2).

In Sect. 3 we extend the «K-matrix» equation for two-particle \(\rightarrow \) two-particle scattering by defining a reduced amplitude \(H^{22} \) that lacks the three-particle cut in \(A^{22} \), as well as the two-particle cut. This simultaneously involves the amplitude \(A^{22} \) for which a reduced amplitude \(K^{22} \) is thus defined. We find that some of the auxiliary functions we used in Sect. 2 turn up again in the definition of \(H^{22} \) and \(K^{22} \).

The complete set of equations (twenty-six in all) for the two-particle \(\rightarrow \) three-particle and three-particle \(\rightarrow \) three-particle processes in Sect. 2, like Branson's equations (2), contains much redundancy. This was useful (in Sect. 2) in providing some insight in the algebraic manipulations since it rendered term-by-term comparison with the unitarity equations possible. In Sect. 4 the reduction of the equations to a proper mathematical form (eight equations) is performed. When the \(K \)-functions are assumed, one has to solve three coupled integral equations to obtain either \(A^3 \) or \(A^{33} \). In Sect. 4 we also include the specialization of the reduced equations to the case of identical particles.

2. – The reduced amplitudes \(K^{23}, K^{33} \).

It is the purpose in this Section to define simultaneously reduced amplitudes \(K^{23}, K^{33} \) for the transition amplitudes \(A^{23}, A^{33} \) such that they lack normal-threshold singularities in the physical region. We shall adopt Branson's propa-