Supersymmetric Gauge-Invariant Interaction Revisited.

A. W. SMITH (*)
Centro Brasileiro de Pesquisas Físicas, CNPq/CBPF
Rua Dr. Xavier Sigaud, 150, 22290 Rio de Janeiro, RJ, Brasil

J. B. NETO
Instituto de Física, UFRJ, Cidade Universitária
21944 Ilha do Fundão, Rio de Janeiro, RJ, Brasil

(riccuto il 2 Dicembre 1983)

Summary. — A supersymmetric Lagrangian invariant under local \(U_1 \) gauge transformations is written in terms of a nonchiral superfield which substitutes the usual vector supermultiplet together with chiral and antichiral superfields. The Euler equations allow us to obtain the off-shell version of the usual Lagrangian for supersymmetric quantum electrodynamics (SQED).

PACS. 12.90. — Miscellaneous theoretical ideas and models.

1. — Introduction.

The superfields introduced by SALAM and STRATHDEE (1) provide an elegant and compact description of supersymmetry representation. They are defined over the eight-dimensional space whose points \(z^\mu \) are represented by \((x^m, \theta^\alpha, \bar{\theta}^{\dot{\mu}}) \), where \(x^m \) (\(m = 0, 1, 2, 3 \)) denotes the usual space-time co-ordinates and the Weyl spinors \(\theta^\alpha, \bar{\theta}^{\dot{\mu}} \) are anticommuting Grassmann's variables with \(\mu, \dot{\mu} = 1, 2 \). We are going to use the same notations and conventions of ref. (2).

(*) Permanent address: Pontificia Universidade Católica do Rio de Janeiro, Departamento de Física Teórica, Rua Marquês de São Vicente 225, Gávea, 22452 Rio de Janeiro, RJ, Brasil

Superfields have a general power series expansion in θ and $\bar{\theta}$ given by

\begin{align}
F(x, \theta, \bar{\theta}) &= f(x) + \theta \psi(x) + \bar{\theta} \bar{\psi}(x) + \theta \theta m(x) + \\
&\quad + \theta \theta n(x) + \theta \sigma^m \theta v_m + \theta \bar{\theta} \lambda(x) + \bar{\theta} \theta \bar{\psi}(x) + \theta \theta \bar{\theta} \bar{\psi}(x)
\end{align}

and transforms as

\begin{equation}
\delta F = (\xi \psi + \bar{\xi} \bar{\psi}) F'
\end{equation}

under a supersymmetry transformation with parameters ξ^a, $\bar{\xi}^\alpha$, where Q_a, \bar{Q}^α are the differential operators

\begin{align}
Q_a &= \frac{\partial}{\partial \theta^a} - i \sigma^m_{a\beta} \bar{\theta}^\beta \frac{\partial}{\partial \bar{\theta}^m}, \\
\bar{Q}^\alpha &= \frac{\partial}{\partial \bar{\theta}^\alpha} - i \theta^a \sigma^m_{a\alpha} \theta^m \frac{\partial}{\partial \theta^m}.
\end{align}

Usually some constraints are introduced on superfields and the most common ones are

\begin{align}
\bar{D}_a \varphi &= 0, \\
D_a \varphi^+ &= 0, \\
V^+ &= V,
\end{align}

where D_a and \bar{D}_a are the usual covariant derivatives:

\begin{align}
D_a &= \frac{\partial}{\partial \theta^a} + i \sigma^m_{a\beta} \bar{\theta}^\beta \frac{\partial}{\partial \bar{\theta}^m}, \\
\bar{D}_a &= - \frac{\partial}{\partial \bar{\theta}^a} - i \theta^m \sigma^m_{a\alpha} \theta^m \frac{\partial}{\partial \theta^a}.
\end{align}

φ, φ^+ and V are called chiral, antichiral and vector superfields, respectively, and they have been used to construct supersymmetric gauge-invariant Lagrangians ($^{(2)}$).

Projection operators P_1, P_2 (4) can be introduced with the following properties:

\begin{align}
P_1 \varphi^+ &= \varphi^+, \\
P_2 \varphi &= \varphi, \\
P_1 \varphi &= P_2 \varphi^+ = 0.
\end{align}
