Experimental Study of \(^{3}\text{He}, \alpha\) Reactions on \(2s-1d\) and \(1f_{\frac{3}{2}}\) Nuclei.

I. \(^{3}\text{He}, \alpha\) Reaction on Silicon Isotopes (*)

F. PELLEGRINI, I. FILOSOFO, F. GENTILIN and I. SCOTONI

Istituto di Fisica dell'Università - Padova
Istituto Nazionale di Fisica Nucleare - Sezione di Padova
Laboratori Nazionali di Legnaro - Legnaro (Padova)

I. GABRIELLI

Istituto di Fisica dell'Università - Trieste
Istituto Nazionale di Fisica Nucleare - Sottosezione di Trieste

(riccuito il 6 Ottobre 1969)

Summary. — Angular distribution for \(^{29}\text{Si}(^{3}\text{He}, \alpha)^{29}\text{Si}\) and \(^{30}\text{Si}(^{3}\text{He}, \alpha)^{30}\text{Si}\) reactions induced by 10 MeV \(^{3}\text{He}\) particles have been measured. We have found experimental evidence that the silicon isotopes contain in their ground state large core-excited components. Neutron occupation numbers for \(d_{\frac{5}{2}}, d_{\frac{3}{2}}, s_{\frac{1}{2}}\) and \(f_{\frac{3}{2}}\) orbits are obtained for the ground state of the silicon isotopes and compared with the shell-model prediction.

1. – Introduction.

In this and in the following papers \(^{(1,2)}\), experiments on \(^{3}\text{He}, \alpha\) reactions are presented at an \(^{3}\text{He}\) bombarding energy of 10 MeV.

There is experimental evidence \(^{(3,4)}\) that \(^{3}\text{He}, \alpha\) can be employed successfully as single-neutron transfer reactions on medium and light nuclei at bom-
barding energy as low as 10 MeV. The 2s-1d shell nuclear region is of particular interest. There are shell-model calculations (2-7) which had success in accounting for nuclear phenomena in the 2s\textsubscript{1/2}-1d\textsubscript{1/2} shell. One of the basic approximations made in these calculations was to treat the 28Si core as a closed 1d\textsubscript{1/2} shell, an assumption which is not in agreement with the experimental information about the 28Si nucleus (5,9). Recent experiments (5,9) performed using (3He, \alpha) reactions on 28Si and 30Si nuclei have shown appreciable core excitation.

The experimental results indicate that the neutron orbits 1d\textsubscript{3/2}, 2s\textsubscript{1/2} and 1d\textsubscript{1/2} in the ground state of 28Si are filled to approximately 60\%, 35\% and 13\%, respectively, while in 30Si the experiments indicate that the 1d\textsubscript{3/2} neutron shell is nearly filled and the remaining neutrons are split about equally between the 2s\textsubscript{1/2} and 1d\textsubscript{1/2} shell with an admixture of a few percent of f-wave neutrons.

In order to complete the study of the nuclear structure of the ground state of the silicon isotopes the present experiment was performed on 28Si and 30Si nuclei at a bombarding energy of 10 MeV.

2. - Experimental procedure.

The doubly ionized 3He beam (11) from the CN Van de Graaff accelerator of Legnaro (Padova) was employed for the present measurements. The separation of the doubly ionized 3He beam from the single one was accomplished by the use of a magnetic triplet which is shown schematically in Fig. 1.

The principle of operation of such a magnetic lens is the following. By focusing the doubly ionized 3He beam on the diaphragm at the entrance of the ion tube accelerator, as indicated in Fig. 1, the singly ionized 3He beam is focused to infinity (11). In this way it is possible to have, in the ion tube accelerator, about equal amounts of current of singly and doubly ionized 3He beams, which can be easily separated by the analysing magnet. Typical beam

(11) I. Scotoni and G. Galeazzi: to be published.