Angular Distributions of Secondary Relativistic Charged Particles Produced in Interactions of Negative Pions in Emulsion at 300 GeV/c.

M. Jurčić, Đ. Krmpotić, O. Adamović and V. Gerc
Institute of Physics, University of Belgrade, YU-11001
Belgrade, Yugoslavia Post. fak. 57

J. Lory, D. Schune, Tsai-Chü and B. Willot
LPNHE, Université de Pierre et Marie Curie - F-75000 Paris, France

K. P. Hong, C. O. Kim, S. N. Kim and K. A. Moon
Department of Physics, Korea University - Seoul 132, Korea

R. Schmidt
Laboratoire du Rayonnement Cosmique - F-69000 Lyon, France

G. Baumann
Université de Nancy - F-54000 Nancy, France

M. López Agüera, R. Niembro, A. Ruiz and E. Villar
Universidad de Santander - Santander, Espana

(ricevuto il 10 Aprile 1985)

Summary. — Angular-distribution data are presented of single relativistic charged particles produced in inelastic and incoherent negative-pion interactions with emulsion nuclei heavier than hydrogen at 300 GeV/c. The obtained results are compared with data from proton nuclei interactions at the same energy.

PACS. 13.85.t. — Hadron-induced high- and superhigh-energy interactions, energy > 10 GeV.
1. Introduction.

This is the continuation of a search for fundamental characteristics of secondary charged particles produced in inelastic and incoherent interactions of 300 GeV/c negative pions with emulsion nuclei heavier than hydrogen (π^--em). In a previous paper (1) the multiplicities of produced secondary charged particles were analysed and now the characteristics of angular distributions of secondary relativistic charged particles ($\beta > 0.7$, s-particles) are investigated. The angular-distribution spectra are one of the basic data sources on one-particle distributions of s-particles in multiple particle production in hadron-nucleus (hA) interactions at high energies.

2. The experimental procedure and used parameters.

The general experimental procedure is cited in a previous paper (1). Angular-distribution data are based on 316 (π^--em) and 359 (p-em) interactions with 4444 and 5961 s-particles, respectively. The following variables were used in the analysis of the angular distributions: the pseudorapidity $\eta = - \ln \tan (\theta/2)$ and/or the variable $\lambda = \log \tan \theta$, θ being the laboratory polar angle between the primary and the emitted particle. At ultrarelativistic energies for s-particles, when $p_l^2 > p_\perp^2 > m^2$, the pseudorapidity $\eta \approx y$, y is the longitudinal rapidity of the s-particles ($y = ½ \ln (E + p_\perp)/(E - p_\perp) = \ln (E + p_\perp)/\sqrt{m^2 + p_\perp^2}$, where E, p_\perp, and m are energies, longitudinal and transverse momenta and masses of s-particles, respectively).

The variable η may be then conveniently applied to pions as s-particles in (hA) interactions at high energies. This is rather important because the rapidity distribution $dN/d\eta$ is invariant under longitudinal Lorentz transformations, i.e. the shape of the distribution remains invariant.

The polar angles θ of the emitted particles in the laboratory system are related to those in the e.m. system θ^* by

$$\tan \theta = \beta^* \sin \theta^*/(\beta^* + \beta^* \cos \theta^*) \gamma_e,$$

where β^* is the particle velocity in the e.m. system, β^* the relative velocity of both co-ordinate systems, and γ_e the Lorentz factor of the e.m. system respectively. From eq. (1) at $\beta^*/\beta^* \approx 1$ one obtains $\log \tan \theta = - \log \gamma_e + 0.43 \ln \tan (\theta^*/2)$ and since $\eta^* = - \log (\theta^*/2)$ introducing η^* one gets the